1
|
Le Mauff A, Norris EJ, Li AY, Swale DR. Repellent activity of essential oils to the Lone Star tick, Amblyomma americanum. Parasit Vectors 2024; 17:202. [PMID: 38711138 DOI: 10.1186/s13071-024-06246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/14/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The Lone Star tick, Amblyomma americanum is important to human health because of a variety of pathogenic organisms transmitted to humans during feeding events, which underscores the need to identify novel approaches to prevent tick bites. Thus, the goal of this study was to test natural and synthetic molecules for repellent activity against ticks in spatial, contact and human fingertip bioassays. METHODS The efficacy of essential oils and naturally derived compounds as repellents to Am. americanum nymphs was compared in three different bioassays: contact, spatial and fingertip repellent bioassays. RESULTS Concentration response curves after contact exposure to 1R-trans-chrysanthemic acid (TCA) indicated a 5.6 μg/cm2 concentration required to repel 50% of ticks (RC50), which was five- and sevenfold more active than DEET and nootkatone, respectively. For contact repellency, the rank order of repellency at 50 μg/cm2 for natural oils was clove > geranium > oregano > cedarwood > thyme > amyris > patchouli > citronella > juniper berry > peppermint > cassia. For spatial bioassays, TCA was approximately twofold more active than DEET and nootkatone at 50 μg/cm2 but was not significantly different at 10 μg/cm2. In spatial assays, thyme and cassia were the most active compounds tested with 100% and 80% ticks repelled within 15 min of exposure respectively and was approximately twofold more effective than DEET at the same concentration. To translate these non-host assays to efficacy when used on the human host, we quantified repellency using a finger-climbing assay. TCA, nootkatone and DEET were equally effective in the fingertip assay, and patchouli oil was the only natural oil that significantly repelled ticks. CONCLUSIONS The differences in repellent potency based on the assay type suggests that the ability to discover active tick repellents suitable for development may be more complicated than with other arthropod species; furthermore, the field delivery mechanism must be considered early in development to ensure translation to field efficacy. TCA, which is naturally derived, is a promising candidate for a tick repellent that has comparable repellency to commercialized tick repellents.
Collapse
Affiliation(s)
- Anais Le Mauff
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - Edmund J Norris
- Center for Medical, Agricultural, and Veterinary Entomology, United States Department of Agriculture, Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Andrew Y Li
- Invasive Insect Biocontrol & Behavior Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Daniel R Swale
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA.
| |
Collapse
|
2
|
Swale DR, Bloomquist JR, McComic SE, Burgess ER. Cross resistance to brevetoxin-3 by kdr and super-kdr mutations in house flies. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105898. [PMID: 38685256 DOI: 10.1016/j.pestbp.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
The dinoflagellate Karenia brevis is a causative agent of red tides in the Gulf of Mexico and generates a potent family of structurally related brevetoxins that act via the voltage-sensitive Na+ channel. This project was undertaken to better understand the neurotoxicology and kdr cross-resistance to brevetoxins in house flies by comparing the susceptible aabys strain to ALkdr (kdr) and JPskdr (super-kdr). When injected directly into the hemocoel, larvae exhibited rigid, non-convulsive paralysis consistent with prolongation of sodium channel currents, the known mechanism of action of brevetoxins. In neurophysiological studies, the firing frequency of susceptible larval house fly central nervous system preparations showed a > 200% increase 10 min after treatment with 1 nM brevetoxin-3. This neuroexcitation is consistent with the spastic paralytic response seen after hemocoel injections. Target site mutations in the voltage-sensitive sodium channel of house flies, known to confer knockdown resistance (kdr and super-kdr) against pyrethroids, attenuated the effect of brevetoxin-3 in baseline firing frequency and toxicity assays. The rank order of sensitivity to brevetoxin-3 in both assays was aabys > ALkdr > JPskdr. At the LD50 level, resistance ratios for the knockdown resistance strains were 6.9 for the double mutant (super-kdr) and 2.3 for the single mutant (kdr). The data suggest that knockdown resistance mutations may be one mechanism by which flies survive brevetoxin-3 exposure during red tide events.
Collapse
Affiliation(s)
- Daniel R Swale
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32610, USA.
| | - Jeffrey R Bloomquist
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32610, USA
| | - Sarah E McComic
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32610, USA
| | - Edwin R Burgess
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
3
|
Agramonte NM, Bernier UR, Gezan SA, Bloomquist JR. Differences in excito-repellent behavior between susceptible and permethrin-resistant strains of Aedes aegypti upon exposure to insecticide-treated fabric. PEST MANAGEMENT SCIENCE 2024; 80:586-591. [PMID: 37740933 DOI: 10.1002/ps.7785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND An important component of the biological activity of pyrethroids, when used in disease vector control, is excito-repellency. In this study, behavioral differences between insecticide susceptible (Orlando) and pyrethroid resistant (Puerto Rican) strains of Aedes aegypti were explored in a round glass arena using fabrics treated with permethrin, etofenprox, deltamethrin, or DDT. Repellency was evaluated across several variables, including the time to first flight (TFF), number of landings (NOL), total flight time (TFT), and maximum surface contact (MSC), all by video analysis. RESULTS Results from the Orlando strain indicated they were less likely than the Puerto Rican strain to tolerate tarsal contact with the treated fabrics. All four response variables indicated that the mosquito flight and landing behavior was most affected by pyrethroid resistance [knockdown resistance (kdr)] status. In other experiments, mosquitoes were surgically altered, with antennae ablated bilaterally, and these mosquitoes were more likely to stay on the treated surfaces for longer periods of time, irrespective of any chemical exposure. There were also differences in the responses to antennal ablation between the two strains of mosquitoes, indicating that resistance factors, probably kdr, influence the reactivity of mosquitoes to pyrethroid and DDT treatments, and that it was not completely negated by antennal ablation. CONCLUSIONS These findings confirm the role of antennal olfactory components in the expression of excito-repellent behaviors, and also support the hypothesis that excito-repellency from pyrethroid/DDT exposure is probably due to a combination of sublethal neurotoxic excitation and interactions with the olfactory system. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Natasha M Agramonte
- Emerging Pathogens Institute, Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
- US Department of Agriculture - Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
- Department of Environmental Health, Richardson Health Center, Decatur, GA, USA
| | - Ulrich R Bernier
- US Department of Agriculture - Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
| | - Salvador A Gezan
- School of Forest Resources and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
- VSN International, Hemel Hempstead, UK
| | - Jeffrey R Bloomquist
- Emerging Pathogens Institute, Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Norris EJ, Kline J, Bloomquist JR. Repellency and Toxicity of Vapor-Active Benzaldehydes against Aedes aegypti. ACS Infect Dis 2024; 10:120-126. [PMID: 38099713 DOI: 10.1021/acsinfecdis.3c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Chemical screening efforts recently found that 3-phenoxybenzaldehyde, a breakdown product of alpha-cyano pyrethroids, was a potent spatial repellent against Aedes aegypti mosquitoes in a glass tube repellency assay. In order to characterize this molecule further and identify structure-activity relationships, a set of 12 benzaldehyde analogues were screened for their repellency and toxicity in vapor phase exposures at 100 μg/cm2. Dose-response analyses were performed for the most active compounds in order to better characterize their repellent potency and toxicity compared to those of other commercially available toxicants. The three most toxic compounds (LC50 values) were 3-chlorobenzaldehyde (CBA) (37 μg/cm2), biphenyl-3-carboxaldehyde (BCA) (48 μg/cm2), and 3-vinylbenzaldehyde (66 μg/cm2), which makes them less toxic than bioallethrin (6.1 μg/cm2) but more toxic than sandalwood oil (77 μg/cm2), a repellent/toxic plant essential oil. The most repellent analogues with EC50 values below 30 μg/cm2 were 3-phenoxybenzaldehyde (6.3 μg/cm2), isophthalaldehyde (23 μg/cm2), BCA (17 μg/cm2), and CBA (22 μg/cm2), which makes them about as active as N,N-diethyl-3-methylbenzamide (25.4 μg/cm2). We further investigated the activity of a select group of these benzaldehydes to block the firing of the central nervous system of A. aegypti larvae. Compounds most capable of repelling and killing mosquitoes in the vapor phase were also those most capable of blocking nerve firing in the larval mosquito nervous system. The results demonstrate that benzaldehyde analogues are viable candidate repellent and insecticidal molecules and may lead to the development of future repellent and vapor toxic vector control tools.
Collapse
Affiliation(s)
- Edmund J Norris
- Center for Medical, Agricultural, and Veterinary Entomology, United States Department of Agriculture-Agricultural Research Service, Gainesville, Florida 32608, United States
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32610, United States
| | - Jedidiah Kline
- Center for Medical, Agricultural, and Veterinary Entomology, United States Department of Agriculture-Agricultural Research Service, Gainesville, Florida 32608, United States
| | - Jeffrey R Bloomquist
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
5
|
Richoux GM, Yang L, Norris EJ, Linthicum KJ, Bloomquist JR. Structural Exploration of Novel Pyrethroid Esters and Amides for Repellent and Insecticidal Activity against Mosquitoes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18285-18291. [PMID: 37916736 DOI: 10.1021/acs.jafc.3c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The emergence of pyrethroid-resistant mosquitoes is a worldwide problem that necessitates further research into the development of new repellents and insecticides. This study explored the modification of existing pyrethroid acids to identify structural motifs that might not be affected by kdr active site mutations that elicit pyrethroid resistance. Because synthetic pyrethroids almost always contain activity-dependent chiral centers, we chose to focus our efforts on exploring alkoxy moieties of esters obtained with 1R-trans-permethrinic and related acids, which we showed in previous studies to have repellent and/or repellent synergistic properties. To this end, compounds were synthesized and screened for spatially acting repellency and insecticidal activity against the susceptible, Orlando, and pyrethroid-resistant, Puerto Rico, strains of Aedes aegypti mosquito. Screening utilized a high-throughput benchtop glass tube assay, and the compounds screened included a mixture of branched, unbranched, aliphatic, halogenated, cyclic, non-cyclic, and heteroatom-containing esters. Structure-activity relationships indicate that n-propyl, n-butyl, n-pentyl, cyclobutyl, and cyclopentyl substituents exhibited the most promising repellent activity with minimal kdr cross resistance. Preliminary testing showed that these small alcohol esters can be synergistic with phenyl amides and pyrethroid acids. Further derivatization of pyrethroid acids offer an interesting route to future active compounds, and while mosquitoes were the focus of this work, pyrethroid acids and esters have potential for use in reducing pest populations and damage in cropping systems as well.
Collapse
Affiliation(s)
- Gary M Richoux
- Emerging Pathogens Institute, Entomology and Nematology Department, University of Florida, Gainesville, Florida 32610, United States
| | - Liu Yang
- Emerging Pathogens Institute, Entomology and Nematology Department, University of Florida, Gainesville, Florida 32610, United States
| | - Edmund J Norris
- Emerging Pathogens Institute, Entomology and Nematology Department, University of Florida, Gainesville, Florida 32610, United States
- Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Gainesville, Florida 32608, United States
| | - Kenneth J Linthicum
- Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Gainesville, Florida 32608, United States
| | - Jeffrey R Bloomquist
- Emerging Pathogens Institute, Entomology and Nematology Department, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
6
|
Zong W, Su W, Xie Q, Gu Q, Deng X, Ren Y, Li H. Expression, characterization, and immobilization of a novel SGNH esterase Est882 and its potential for pyrethroid degradation. Front Microbiol 2022; 13:1069754. [PMID: 36620037 PMCID: PMC9810817 DOI: 10.3389/fmicb.2022.1069754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
The widely-used pyrethroid pesticides have attracted public attention because of their potentials to cause environmental pollution and toxic effects on non-target organisms. Esterase is a kind of hydrolytic enzyme that can catalyze the cleavage or formation of ester bonds. it plays a pivotal role in the decomposition of pyrethroids and esters containing industrial pollutants through the hydrolysis of ester bonds. Here, a new esterase gene est882 was successfully screened, which encodes Est882, a SGNH family esterase composed of 294 amino acids. It was heterogeneously expressed, identified and immobilized. Multiple sequence alignment showed that Est882 had a typical GDS(X) conserved motif and a catalytic triad composed of Ser79, Asp269 and His275. Phylogenetic analysis showed that Est882 shall belong to a new esterase family. Biochemical characterization demonstrated that the optimum condition was 40°C and pH 9.0. Est882 immobilization was studied with mesoporous silica SBA-15 as the carrier and found to significantly improve the tolerance and stability of Est882. Its optimum pH increased to 10.0 and stabilized within pH 8.0-11.0. Free Est882 can effectively degrade various pyrethroids within 30 min, with a degradation rate above 80%. The immobilized Est882 yet degraded more than 70% of pyrethroids within 30 min. The present study indicated that Est882 has outstanding potential in bioremediation of a pyrethroid-polluted environment. These characteristics endow Est882 with potential values in various industrial applications and hydrolysis of pyrethroid residues.
Collapse
Affiliation(s)
- Wei Zong
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Bioactive Drug Research, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Su
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Bioactive Drug Research, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qingfen Xie
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Bioactive Drug Research, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quliang Gu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Bioactive Drug Research, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinyi Deng
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Bioactive Drug Research, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yifei Ren
- Guangzhou Hua shuo Biotechnology Co. Ltd., Guangzhou, China
- *Correspondence: Yifei Ren,
| | - He Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Bioactive Drug Research, College of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
- He Li,
| |
Collapse
|
7
|
Yang L, Demares F, Norris EJ, Jiang S, Bernier UR, Bloomquist JR. Bioactivities and modes of action of VUAA1. PEST MANAGEMENT SCIENCE 2021; 77:3685-3692. [PMID: 32741076 DOI: 10.1002/ps.6023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The compound 2-((4-ethyl-5-(pyridin-3-yl)-4H-1,2,4-triazol-3-yl)thio)-N-(4-ethylphenyl) acetamide (VUAA1) is reported to be an odorant receptor co-receptor (Orco) agonist in insects with potential use as an insect repellent. For this study, the biological activity of VUAA1 was investigated in several bioassays with Aedes aegypti, including adult contact, spatial repellency, and larval repellency assays, as well as topical, injection, and feeding toxicity assays. Neurophysiological action was further explored by analysis of fruit fly central nervous system firing, cockroach axon recordings, patch clamp analysis of Kv2 potassium channel, and acetylcholinesterase inhibition studies. Finally, the metabolic impact on the toxicity of VUAA1 was explored by applying it in combination with established metabolic synergists. RESULTS In repellency and bite protection screens, VUAA1 showed little activity against adult mosquitoes, apparently due to its low volatility, since its effectiveness was increased by heating or mixing with transfluthrin acid and citronella oil. It did produce measurable repellency of mosquito larvae that was more potent than N,N-diethyl-m-toluamide (DEET). Overall, VUAA1 showed low acute toxicity to both insects and mice, and it was weakly synergized by triphenyl phosphate. There was no observed cross-resistance in a pyrethroid-resistant strain of Anopheles gambiae. VUAA1 showed a two-phase effect on the central nervous system, with neuroexcitation at 1 μmol L-1 and an inhibitory effect at 100 μmol L-1 that may relate to block of Kv2 potassium channels. CONCLUSIONS VUAA1 presented low toxicity, similar to other insect repellents. Its limited solubility, low volatility, and resulting poor adult repellency without additional adjuvants may restrict the utility of VUAA1 in typical public health applications. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liu Yang
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Fabien Demares
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Edmund J Norris
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Shiyao Jiang
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Ulrich R Bernier
- USDA, ARS, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Jeffrey R Bloomquist
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Norris EJ, Bloomquist JR. Co-Toxicity Factor Analysis Reveals Numerous Plant Essential Oils Are Synergists of Natural Pyrethrins against Aedes aegypti Mosquitoes. INSECTS 2021; 12:154. [PMID: 33670293 PMCID: PMC7917600 DOI: 10.3390/insects12020154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 11/17/2022]
Abstract
With insecticide-resistant mosquito populations becoming an ever-growing concern, new vector control technologies are needed. With the lack of new chemical classes of insecticides to control mosquito populations, the development of novel synergists may improve the performance of available insecticides. We screened a set of 20 plant essential oils alone and in combination with natural pyrethrins against Aedes aegypti (Orlando) female adult mosquitoes to assess their ability to synergize this natural insecticide. A co-toxicity factor analysis was used to identify whether plant oils modulated the toxicity of natural pyrethrins antagonistically, additively, or synergistically. Both knockdown at 1 h and mortality at 24 h were monitored. A majority of oils increased the toxicity of natural pyrethrins, either via an additive or synergistic profile. Many oils produced synergism at 2 µg/insect, whereas others were synergistic only at the higher dose of 10 µg/insect. Amyris, cardamom, cedarwood, and nutmeg East Indies (E.I.) oils were the most active oils for increasing the mortality of natural pyrethrins at 24 h with co-toxicity factors greater than 50 at either or both doses. A number of oils also synergized the 1 h knockdown of natural pyrethrins. Of these, fir needle oil and cypress oils were the most successful at improving the speed-of-action of natural pyrethrins at both doses, with co-toxicity factors of 130 and 62, respectively. To further assess the co-toxicity factor method, we applied selected plant essential oils with variable doses of natural pyrethrins to calculate synergism ratios. Only the oils that produced synergistic co-toxicity factors produced statistically significant synergism ratios. This analysis demonstrated that the degree of co-toxicity factor correlated well with the degree of synergism ratio observed (Pearson correlation coefficient r = 0.94 at 2 µg/insect; r = 0.64 at 10 µg/insect) and that the co-toxicity factor is a useful tool in screening for synergistic activity.
Collapse
Affiliation(s)
- Edmund J. Norris
- United States Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, Entomology and Nematology Department, University of Florida, Gainesville, FL 32610, USA;
| | - Jeffrey R. Bloomquist
- Emerging Pathogens Institute, Entomology and Nematology Department, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
9
|
Cuba IH, Richoux GR, Norris EJ, Bernier UR, Linthicum KJ, Bloomquist JR. Vapor phase repellency and insecticidal activity of pyridinyl amides against anopheline mosquitoes. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100062. [PMID: 35284890 PMCID: PMC8906123 DOI: 10.1016/j.crpvbd.2021.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/19/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022]
Abstract
It is important to identify repellents that can provide reliable protection from arthropod biting and prevent arthropod-borne diseases, such as malaria. In the present study, the spatial repellent activity and toxicity of two novel pyridinyl amides (1 and 2) were evaluated against Anopheles albimanus, Anopheles quadrimaculatus, and Anopheles gambiae. In vapor repellency bioassays, compound 2 was generally more effective than DEET and 2-undecanone, while compound 1 was about as active as these standards. Overall, transfluthrin was the most active compound for inducing anopheline mosquito repellency, knockdown, and lethality. Although they were not the most active repellents, the two experimental amides produced the largest electroantennographic responses in female antennae. They also displayed modest toxicity to anopheline mosquitoes. Significant synergism of repellency was observed for the mixture of a pyrethroid-derived acid and the repellent 2-undecanone against anopheline mosquitoes, similar to that observed previously in Aedes aegypti. Overall, this study provides insight for further synthesis of alternative amide compounds for use as spatial treatments. Two experimental pyridyl amides were synthesized. They were more repellent than DEET, equal to 2-undecanone and less than transfluthrin. They were about as toxic as DEET and 2-undecanone, but less than transfluthrin. Experimental amides performed about the same across all anopheline species.
Collapse
|
10
|
Richoux GM, Yang L, Norris EJ, Tsikolia M, Jiang S, Linthicum KJ, Bloomquist JR. Structure-Activity Relationship Analysis of Potential New Vapor-Active Insect Repellents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13960-13969. [PMID: 33147044 DOI: 10.1021/acs.jafc.0c03333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A total of 115 aryl amides were synthesized and screened for vapor repellency against the Orlando (OR) strain of Aedes aegypti mosquitoes. Of these compounds, 29 had 1 h repellency EC50 values comparable to or better than N,N-diethyl-meta-toluamide (DEET, 1 h EC50 value of 35 μg/cm2), with 2,2,3,3,3-pentafluoro-N-(4-fluorophenyl)propenamide (53) and 2,2,3,3,4,4,4-heptafluoro-N-(3,4,5-trifluorophenyl)butanamide (101) exhibiting the most potent EC50 values of 4.5 and 2.9 μg/cm2, respectively. The cross-resistance of select, highly potent, derivatives against the pyrethroid-resistant Puerto Rico (PR) strain of A. aegypti was also investigated, and little to no resistance was observed. When synergized with 1R-trans-permethrinic acid (TFA), compound 101 had a 1 h EC50 value 6 times lower than metofluthrin against OR and 40 times lower against PR mosquitoes. Additionally, preliminary mammalian oral toxicity was screened for compounds 69 and 101, and both exhibited LD50 values of >2000 mg/kg. The structure-activity relationship analysis, which guided the synthesis of these derivatives, is given, and key trends are highlighted to inform future analogue design.
Collapse
Affiliation(s)
- Gary M Richoux
- Emerging Pathogens Institute, Entomology and Nematology Department, University of Florida, Gainesville, Florida 32610 United States
| | - Liu Yang
- Emerging Pathogens Institute, Entomology and Nematology Department, University of Florida, Gainesville, Florida 32610 United States
| | - Edmund J Norris
- Emerging Pathogens Institute, Entomology and Nematology Department, University of Florida, Gainesville, Florida 32610 United States
| | - Maia Tsikolia
- Emerging Pathogens Institute, Entomology and Nematology Department, University of Florida, Gainesville, Florida 32610 United States
| | - Shiyao Jiang
- Emerging Pathogens Institute, Entomology and Nematology Department, University of Florida, Gainesville, Florida 32610 United States
| | - Kenneth J Linthicum
- Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Gainesville, Florida 32608 United States
| | - Jeffrey R Bloomquist
- Emerging Pathogens Institute, Entomology and Nematology Department, University of Florida, Gainesville, Florida 32610 United States
| |
Collapse
|