1
|
Meng P, Wang Y, Huang Y, Liu T, Ma M, Han J, Su X, Li W, Wang Y, Lu C. A strategy to boost xanthine oxidase and angiotensin converting enzyme inhibitory activities of peptides via molecular docking and module substitution. Food Chem 2024; 442:138401. [PMID: 38219570 DOI: 10.1016/j.foodchem.2024.138401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Molecular docking and activity evaluation screened the dipeptide module GP with low xanthine oxidase (XOD) inhibitory activity and modules KE and KN with high activity, and identified them as low- and high-contribution modules, respectively. We hypothesized the substitution of low-contribution modules in peptides with high contributions would boost their XOD inhibitory activity. In the XOD inhibitory peptide GPAGPR, substitution of GP with both KE and KN led to enhanced affinity between the peptides and XOD. They also increased XOD inhibitory activity (26.4% and 10.3%) and decreased cellular uric acid concentrations (28.0% and 10.4%). RNA sequencing indicated that these improvements were attributable to the inhibition of uric acid biosynthesis. In addition, module substitution increased the angiotensin-converting enzyme inhibitory activity of GILRP and GAAGGAF by 84.8% and 76.5%. This study revealed that module substitution is a feasible strategy to boost peptide activity, and provided information for the optimization of hydrolysate preparation conditions.
Collapse
Affiliation(s)
- Pengfei Meng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Yanxin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Yumeng Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Tong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Mingxia Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China; Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Jiang F, Liu J, Du Z, Liu X, Shang X, Yu Y, Zhang T. Soybean meal peptides regulated membrane phase of giant unilamellar vesicles: A key role for bilayer amphipathic region localization. Food Res Int 2022; 162:111924. [DOI: 10.1016/j.foodres.2022.111924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
|
3
|
Computer-Aided Screening and Revealing Action Mechanism of Food-Derived Tripeptides Intervention in Acute Colitis. Int J Mol Sci 2022; 23:ijms232113471. [PMID: 36362252 PMCID: PMC9655126 DOI: 10.3390/ijms232113471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Food-derived tripeptides can relieve colitis symptoms; however, their alleviation mode has not been systematically evaluated as an alternative nutritional compound. This study aimed to reveal the potential mechanism of 8000 food-derived tripeptides against acute colitis using a computer-aided screening strategy. Forty-one potential hub targets related to colitis with a Fit score > 4.0 were screened to construct the protein-protein and protein-tripeptide network based on the PharmMapper database and STRING software (Ver. 11.5). In addition, 30 significant KEGG signaling pathways with p-values < 0.001 that the 41 hub targets mainly participated in were identified using DAVID software (Ver. 6.8), including inflammatory, immunomodulatory, and cell proliferation and differentiation-related signaling pathways, particularly in the Ras- and PI3K-Akt signaling pathways. Furthermore, molecular docking was performed using the Autodock against majorly targeted proteins (AKT1, EGFR, and MMP9) with the selected 52 tripeptides. The interaction model between tripeptides and targets was mainly hydrogen-bonding and hydrophobic interactions, and most of the binding energy of the tripeptide target was less than −7.13 kcal/mol. This work can provide valuable insight for exploring food-derived tripeptide mechanisms and therapeutic indications.
Collapse
|
4
|
Zhang B, Liu J, Wen H, Jiang F, Wang E, Zhang T. Structural requirements and interaction mechanisms of ACE inhibitory peptides: molecular simulation and thermodynamics studies on LAPYK and its modified peptides. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Jiang F, Liu J, Niu X, Zhang D, Wang E, Zhang T. Egg White Peptides Increased the Membrane Liquid-Ordered Phase of Giant Unilamellar Vesicles: Visualization, Localization, and Phase Regulation Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2042-2050. [PMID: 35129984 DOI: 10.1021/acs.jafc.1c07846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell membranes are heterogeneous and consist of liquid-ordered (Lo) and liquid-disordered (Ld) phases due to phase separation. Membrane regulation of egg white peptides (LCAY and QVPLW) was confirmed in our previous study. However, the underlying mechanism of phase regulation by the peptides has not been elucidated. This study aimed to explore the effect of LCAY and QVPLW on the membrane phase separation and illustrate their mechanism by giant unilamellar vesicles (GUVs). Based on phase separation visualization, LCAY and QVPLW were found to increase the Lo phase by rearranging lipids and ordering the Ld phase. LCAY and QVPLW can bind to the GUVs and localize in the amphiphilic region of the membrane. By hydrogen bonds and hydrophobic interactions, LCAY and QVPLW may play a cholesterol-like role in regulating phase separation.
Collapse
Affiliation(s)
- Feng Jiang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Xiaodi Niu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong 999077, Pokfulam, Hong Kong
| | - Erlei Wang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| |
Collapse
|
6
|
Jiang F, Wang Y, Liu C, Zhang B, Wang E, Liu J, Zhang T. Egg White-Derived Peptides QVPLW and LCAY Inhibit the Activity of Angiotensin I-Converting Enzyme in Human Umbilical Vein Endothelial Cells by Suppressing Its Recruitment into Lipid Rafts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10350-10357. [PMID: 34448567 DOI: 10.1021/acs.jafc.1c04512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a membrane protein, the activity of angiotensin I-converting enzyme (ACE) can be modulated via regulation of its localization in the cell membrane with food-derived peptides. This study aimed to explore the effect of egg white peptides on the cell membrane localization and activity of ACE in human umbilical vein endothelial cells. ACE activity was found to be related to lipid rafts by using methyl-β-cyclodextrin (MβCD). QVPLW and LCAY can inhibit ACE activity by preventing ACE recruitment into lipid rafts, with in situ IC50 values of 238.46 ± 11.35 μM and 31.55 ± 2.64 μM in the control groups, as well as 45.43 ± 6.15 μM and 34.63 ± 1.59 μM in the MβCD groups, respectively. QVPLW and LCAY may alter the cell membrane properties, including the fluidity, potential, and permeability, and eventually promote the transposition of ACE.
Collapse
Affiliation(s)
- Feng Jiang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ying Wang
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, People's Republic of China
| | - Chang Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Biying Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Erlei Wang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| |
Collapse
|
7
|
Ali MY, Zaib S, Jannat S, Khan I. Inhibition of Angiotensin-I Converting Enzyme by Ginsenosides: Structure-Activity Relationships and Inhibitory Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6073-6086. [PMID: 34014666 DOI: 10.1021/acs.jafc.1c01231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ginseng (Panax ginseng C. A. Meyer) extract has been reported to inhibit the angiotensin converting enzyme (ACE); however, the possible inhibitory action of most of its constituents (ginsenosides) against ACE remains unknown. Thus, in this study, we investigated ginsenoside derivatives' inhibitory effect on ACE. We assessed the activities of 22 ginsenosides, most of which inhibited ACE significantly. Notably, protopanaxatriol, protopanaxadiol, and ginsenoside Rh2 exhibited the most potent ACE inhibitory potential, with IC50 values of 1.57, 2.22, and 5.60 μM, respectively. Further, a kinetic study revealed different modes of inhibition against ACE. Molecular docking studies have confirmed that ginsenosides inhibit ACE via many hydrogen bonds and hydrophobic interactions with catalytic residues and zinc ion of C- and N-domain ACE that block the catalytic activity of ACE. In addition, we found that the active ginsenosides stimulated glucose uptake in insulin-resistant C2C12 skeletal muscle cells in a dose-dependent manner. Moreover, the most active ginsenosides' reactive oxygen species (ROS) and peroxynitrite (ONOO-) scavenging properties were evaluated, in which IC50 values ranged from 1.44-43.83 to 2.36-39.56 μM in ONOO- and ROS, respectively. The results derived from these computational and in vitro experiments provide additional scientific support for the anecdotal use of ginseng in traditional medicine to treat cardiovascular diseases such as hypertension.
Collapse
Affiliation(s)
- Md Yousof Ali
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Susoma Jannat
- Department of Biochemistry and Molecular Biology, University of Calgary, T2N 1N4 Alberta, Canada
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
8
|
Ge H, Cai Z, Chai J, Liu J, Liu B, Yu Y, Liu J, Zhang T. Egg white peptides ameliorate dextran sulfate sodium-induced acute colitis symptoms by inhibiting the production of pro-inflammatory cytokines and modulation of gut microbiota composition. Food Chem 2021; 360:129981. [PMID: 34020366 DOI: 10.1016/j.foodchem.2021.129981] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Egg white peptides (EWPs) can be effectively used to alleviate and treat inflammatory diseases due to their anti-oxidation, anti-inflammation, and microbiota regulation capabilities. A dextran sodium sulfate (DSS)-induced colitis model was used to clarify the regulatory effects of EWPs on colitis. Forty-three peptide sequences were identified from EWPs using LC-MS/MS. The results demonstrated that EWPs decreased the levels of pro-inflammatory cytokines and the extent of crypt damage in a dose-dependent manner. 16S rRNA gene sequencing results indicated that 200 mg/kg EWPs significantly increased the relative abundance of beneficial bacteria Lactobacillus and Candidatus_Saccharimonas, and reduced the relative abundance of pathogenic bacteria Ruminiclostridium and Akkermansia. In addition, the degree of correlation between pro-inflammatory cytokines and microbiota was as follows: interleukin (IL)-1β > IL-8 > IL-6 > tumor necrosis factor-α To summarize, EWPs contributed to the alleviation of colitis symptoms and the intestinal injury through anti-inflammatory effects, repair of intestinal mucosa, and modulation of gut microbiota.
Collapse
Affiliation(s)
- Huifang Ge
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China; College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Zhuanzhang Cai
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China; College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jiale Chai
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China; College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jiyun Liu
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar 39182, Sweden
| | - Boqun Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China; College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China; College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China; College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, People's Republic of China; College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|