1
|
Li M, Li J, Lu X, Schroder R, Chandramohan A, Wuelfing WP, Templeton AC, Xu W, Gindy M, Kesisoglou F, Ling J, Sawyer T, Verma CS, Partridge AW, Su Y. Molecular Mechanism of P53 Peptide Permeation through Lipid Membranes from Solid-State NMR Spectroscopy and Molecular Dynamics Simulations. J Am Chem Soc 2024; 146:23075-23091. [PMID: 39110018 DOI: 10.1021/jacs.4c04230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Macrocyclic peptides show promise in targeting high-value therapeutically relevant binding sites due to their high affinity and specificity. However, their clinical application is often hindered by low membrane permeability, which limits their effectiveness against intracellular targets. Previous studies focused on peptide conformations in various solvents, leaving a gap in understanding their interactions with and translocation through lipid bilayers. Addressing this, our study explores the membrane interactions of stapled peptides, a subclass of macrocyclic peptides, using solid-state nuclear magnetic resonance (ssNMR) spectroscopy and molecular dynamics (MD) simulations. We conducted ssNMR measurements on ATSP-7041M, a prototypical stapled peptide, to understand its interaction with lipid membranes, leading to an MD-informed model for peptide membrane permeation. Our findings reveal that ATSP-7041M adopts a stable α-helical structure upon membrane binding, facilitated by a cation-π interaction between its phenylalanine side chain and the lipid headgroup. This interaction makes the membrane-bound state energetically favorable, facilitating membrane affinity and insertion. The bound peptide displayed asymmetric insertion depths, with the C-terminus penetrating deeper (approximately 9 Å) than the N-terminus (approximately 4.3 Å) relative to the lipid headgroups. Contrary to expectations, peptide dynamics was not hindered by membrane binding and exhibited rapid motions similar to cell-penetrating peptides. These dynamic interactions and peptide-lipid affinity appear to be crucial for membrane permeation. MD simulations indicated a thermodynamically stable transmembrane conformation of ATSP-7041M, reducing the energy barrier for translocation. Our study offers an in silico view of ATSP-7041M's translocation from the extracellular to the intracellular region, highlighting the significance of peptide-lipid interactions and dynamics in enabling peptide transit through membranes.
Collapse
Affiliation(s)
- Mingyue Li
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jianguo Li
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Singapore Eye Research Institute, 20 College Road Discovery Tower, Singapore 169856, Singapore
| | - Xingyu Lu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Ryan Schroder
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - W Peter Wuelfing
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Allen C Templeton
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Wei Xu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Marian Gindy
- Small Molecule Science and Technology, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Filippos Kesisoglou
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jing Ling
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomi Sawyer
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Chandra S Verma
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551, Singapore
| | | | - Yongchao Su
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
2
|
Pires CL, Moreno MJ. Improving the Accuracy of Permeability Data to Gain Predictive Power: Assessing Sources of Variability in Assays Using Cell Monolayers. MEMBRANES 2024; 14:157. [PMID: 39057665 PMCID: PMC11278619 DOI: 10.3390/membranes14070157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The ability to predict the rate of permeation of new compounds across biological membranes is of high importance for their success as drugs, as it determines their efficacy, pharmacokinetics, and safety profile. In vitro permeability assays using Caco-2 monolayers are commonly employed to assess permeability across the intestinal epithelium, with an extensive number of apparent permeability coefficient (Papp) values available in the literature and a significant fraction collected in databases. The compilation of these Papp values for large datasets allows for the application of artificial intelligence tools for establishing quantitative structure-permeability relationships (QSPRs) to predict the permeability of new compounds from their structural properties. One of the main challenges that hinders the development of accurate predictions is the existence of multiple Papp values for the same compound, mostly caused by differences in the experimental protocols employed. This review addresses the magnitude of the variability within and between laboratories to interpret its impact on QSPR modelling, systematically and quantitatively assessing the most common sources of variability. This review emphasizes the importance of compiling consistent Papp data and suggests strategies that may be used to obtain such data, contributing to the establishment of robust QSPRs with enhanced predictive power.
Collapse
Affiliation(s)
- Cristiana L. Pires
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
3
|
Frazee N, Billlings KR, Mertz B. Gaussian accelerated molecular dynamics simulations facilitate prediction of the permeability of cyclic peptides. PLoS One 2024; 19:e0300688. [PMID: 38652734 PMCID: PMC11037548 DOI: 10.1371/journal.pone.0300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/02/2024] [Indexed: 04/25/2024] Open
Abstract
Despite their widespread use as therapeutics, clinical development of small molecule drugs remains challenging. Among the many parameters that undergo optimization during the drug development process, increasing passive cell permeability (i.e., log(P)) can have some of the largest impact on potency. Cyclic peptides (CPs) have emerged as a viable alternative to small molecules, as they retain many of the advantages of small molecules (oral availability, target specificity) while being highly effective at traversing the plasma membrane. However, the relationship between the dominant conformations that typify CPs in an aqueous versus a membrane environment and cell permeability remain poorly characterized. In this study, we have used Gaussian accelerated molecular dynamics (GaMD) simulations to characterize the effect of solvent on the free energy landscape of lariat peptides, a subset of CPs that have recently shown potential for drug development (Kelly et al., JACS 2021). Differences in the free energy of lariat peptides as a function of solvent can be used to predict permeability of these molecules, and our results show that permeability is most greatly influenced by N-methylation and exposure to solvent. Our approach lays the groundwork for using GaMD as a way to virtually screen large libraries of CPs and drive forward development of CP-based therapeutics.
Collapse
Affiliation(s)
- Nicolas Frazee
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, United States of America
| | - Kyle R. Billlings
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, United States of America
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
4
|
Tang X, Kokot J, Waibl F, Fernández-Quintero ML, Kamenik AS, Liedl KR. Addressing Challenges of Macrocyclic Conformational Sampling in Polar and Apolar Solvents: Lessons for Chameleonicity. J Chem Inf Model 2023; 63:7107-7123. [PMID: 37943023 PMCID: PMC10685455 DOI: 10.1021/acs.jcim.3c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
We evaluated a workflow to reliably sample the conformational space of a set of 47 peptidic macrocycles. Starting from SMILES strings, we use accelerated molecular dynamics simulations to overcome high energy barriers, in particular, the cis-trans isomerization of peptide bonds. We find that our approach performs very well in polar solvents like water and dimethyl sulfoxide. Interestingly, the protonation state of a secondary amine in the ring only slightly influences the conformational ensembles of our test systems. For several of the macrocycles, determining the conformational distribution in chloroform turns out to be considerably more challenging. Especially, the choice of partial charges crucially influences the ensembles in chloroform. We address these challenges by modifying initial structures and the choice of partial charges. Our results suggest that special care has to be taken to understand the configurational distribution in apolar solvents, which is a key step toward a reliable prediction of membrane permeation of macrocycles and their chameleonic properties.
Collapse
Affiliation(s)
- Xuechen Tang
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Janik Kokot
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Franz Waibl
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | | | - Anna S. Kamenik
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
5
|
Ramelot TA, Palmer J, Montelione GT, Bhardwaj G. Cell-permeable chameleonic peptides: Exploiting conformational dynamics in de novo cyclic peptide design. Curr Opin Struct Biol 2023; 80:102603. [PMID: 37178478 PMCID: PMC10923192 DOI: 10.1016/j.sbi.2023.102603] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Abstract
Membrane-traversing peptides offer opportunities for targeting intracellular proteins and oral delivery. Despite progress in understanding the mechanisms underlying membrane traversal in natural cell-permeable peptides, there are still several challenges to designing membrane-traversing peptides with diverse shapes and sizes. Conformational flexibility appears to be a key determinant of membrane permeability of large macrocycles. We review recent developments in the design and validation of chameleonic cyclic peptides, which can switch between alternative conformations to enable improved permeability through cell membranes, while still maintaining reasonable solubility and exposed polar functional groups for target protein binding. Finally, we discuss the principles, strategies, and practical considerations for rational design, discovery, and validation of permeable chameleonic peptides.
Collapse
Affiliation(s)
- Theresa A Ramelot
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jonathan Palmer
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA; Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Gaurav Bhardwaj
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA; Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
6
|
Ahmed ETM, Hassan M, Shamma RN, Makky A, Hassan DH. Controlling the Evolution of Selective Vancomycin Resistance through Successful Ophthalmic Eye-Drop Preparation of Vancomycin-Loaded Nanoliposomes Using the Active-Loading Method. Pharmaceutics 2023; 15:1636. [PMID: 37376084 DOI: 10.3390/pharmaceutics15061636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Vancomycin is the front-line defense and drug of choice for the most serious and life-threatening methicillin-resistant Staphylococcus aureus (MRSA) infections. However, poor vancomycin therapeutic practice limits its use, and there is a consequent rise of the threat of vancomycin resistance by complete loss of its antibacterial activity. Nanovesicles as a drug-delivery platform, with their featured capabilities of targeted delivery and cell penetration, are a promising strategy to resolve the shortcomings of vancomycin therapy. However, vancomycin's physicochemical properties challenge its effective loading. In this study, we used the ammonium sulfate gradient method to enhance vancomycin loading into liposomes. Depending on the pH difference between the extraliposomal vancomycin-Tris buffer solution (pH 9) and the intraliposomal ammonium sulfate solution (pH 5-6), vancomycin was actively and successfully loaded into liposomes (up to 65% entrapment efficiency), while the liposomal size was maintained at 155 nm. Vancomycin-loaded nanoliposomes effectively enhanced the bactericidal effect of vancomycin; the minimum inhibitory concentration (MIC) value for MRSA decreased 4.6-fold. Furthermore, they effectively inhibited and killed heteroresistant vancomycin-intermediate S.aureous (h-VISA) with an MIC of 0.338 μg mL-1. Moreover, MRSA could not develop resistance against vancomycin that was loaded into and delivered by liposomes. Vancomycin-loaded nanoliposomes could be a feasible solution for enhancing vancomycin's therapeutic use and controlling the emerging vancomycin resistance.
Collapse
Affiliation(s)
- El Tahra M Ahmed
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza 12585, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy Cairo University, Cairo 12613, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez 43511, Egypt
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy Cairo University, Cairo 12613, Egypt
| | - Amna Makky
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy Cairo University, Cairo 12613, Egypt
| | - Doaa H Hassan
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza 12585, Egypt
| |
Collapse
|
7
|
Tunjic TM, Weber N, Brunsteiner M. Computer aided drug design in the development of proteolysis targeting chimeras. Comput Struct Biotechnol J 2023; 21:2058-2067. [PMID: 36968015 PMCID: PMC10030821 DOI: 10.1016/j.csbj.2023.02.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Proteolysis targeting chimeras represent a class of drug molecules with a number of attractive properties, most notably a potential to work for targets that, so far, have been in-accessible for conventional small molecule inhibitors. Due to their different mechanism of action, and physico-chemical properties, many of the methods that have been designed and applied for computer aided design of traditional small molecule drugs are not applicable for proteolysis targeting chimeras. Here we review recent developments in this field focusing on three aspects: de-novo linker-design, estimation of absorption for beyond-rule-of-5 compounds, and the generation and ranking of ternary complex structures. In spite of this field still being young, we find that a good number of models and algorithms are available, with the potential to assist the design of such compounds in-silico, and accelerate applied pharmaceutical research.
Collapse
|
8
|
Waibl F, Kraml J, Hoerschinger VJ, Hofer F, Kamenik AS, Fernández-Quintero ML, Liedl KR. Grid inhomogeneous solvation theory for cross-solvation in rigid solvents. J Chem Phys 2022; 156:204101. [PMID: 35649837 DOI: 10.1063/5.0087549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Grid Inhomogeneous Solvation Theory (GIST) has proven useful to calculate localized thermodynamic properties of water around a solute. Numerous studies have leveraged this information to enhance structure-based binding predictions. We have recently extended GIST toward chloroform as a solvent to allow the prediction of passive membrane permeability. Here, we further generalize the GIST algorithm toward all solvents that can be modeled as rigid molecules. This restriction is inherent to the method and is already present in the inhomogeneous solvation theory. Here, we show that our approach can be applied to various solvent molecules by comparing the results of GIST simulations with thermodynamic integration (TI) calculations and experimental results. Additionally, we analyze and compare a matrix consisting of 100 entries of ten different solvent molecules solvated within each other. We find that the GIST results are highly correlated with TI calculations as well as experiments. For some solvents, we find Pearson correlations of up to 0.99 to the true entropy, while others are affected by the first-order approximation more strongly. The enthalpy-entropy splitting provided by GIST allows us to extend a recently published approach, which estimates higher order entropies by a linear scaling of the first-order entropy, to solvents other than water. Furthermore, we investigate the convergence of GIST in different solvents. We conclude that our extension to GIST reliably calculates localized thermodynamic properties for different solvents and thereby significantly extends the applicability of this widely used method.
Collapse
Affiliation(s)
- Franz Waibl
- Center for Molecular Biosciences Innsbruck, Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - Johannes Kraml
- Center for Molecular Biosciences Innsbruck, Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - Valentin J Hoerschinger
- Center for Molecular Biosciences Innsbruck, Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - Florian Hofer
- Center for Molecular Biosciences Innsbruck, Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - Anna S Kamenik
- Center for Molecular Biosciences Innsbruck, Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Center for Molecular Biosciences Innsbruck, Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - Klaus R Liedl
- Center for Molecular Biosciences Innsbruck, Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| |
Collapse
|
9
|
Li J, Kannan S, Aronica P, Brown CJ, Partridge AW, Verma CS. Molecular descriptors suggest stapling as a strategy for optimizing membrane permeability of cyclic peptides. J Chem Phys 2022; 156:065101. [DOI: 10.1063/5.0078025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jianguo Li
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix, Singapore 138671
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | | | - Pietro Aronica
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix, Singapore 138671
| | | | - Anthony W. Partridge
- MSD International, Translation Medicine Research Centre, 8 Biomedical Grove, #04-01/05 Neuros Building, Singapore 138665, Singapore
| | - Chandra S. Verma
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix, Singapore 138671
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| |
Collapse
|
10
|
Kamenik AS, Linker SM, Riniker S. Enhanced sampling without borders: on global biasing functions and how to reweight them. Phys Chem Chem Phys 2022; 24:1225-1236. [PMID: 34935813 PMCID: PMC8768491 DOI: 10.1039/d1cp04809k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Molecular dynamics (MD) simulations are a powerful tool to follow the time evolution of biomolecular motions in atomistic resolution. However, the high computational demand of these simulations limits the timescales of motions that can be observed. To resolve this issue, so called enhanced sampling techniques are developed, which extend conventional MD algorithms to speed up the simulation process. Here, we focus on techniques that apply global biasing functions. We provide a broad overview of established enhanced sampling methods and promising new advances. As the ultimate goal is to retrieve unbiased information from biased ensembles, we also discuss benefits and limitations of common reweighting schemes. In addition to concisely summarizing critical assumptions and implications, we highlight the general application opportunities as well as uncertainties of global enhanced sampling.
Collapse
Affiliation(s)
- Anna S Kamenik
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Stephanie M Linker
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| |
Collapse
|
11
|
Sheikh AY, Mattei A, Miglani Bhardwaj R, Hong RS, Abraham NS, Schneider-Rauber G, Engstrom KM, Diwan M, Henry RF, Gao Y, Juarez V, Jordan E, DeGoey DA, Hutchins CW. Implications of the Conformationally Flexible, Macrocyclic Structure of the First-Generation, Direct-Acting Anti-Viral Paritaprevir on Its Solid Form Complexity and Chameleonic Behavior. J Am Chem Soc 2021; 143:17479-17491. [PMID: 34637297 DOI: 10.1021/jacs.1c06837] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Direct-acting antiviral regimens have transformed therapeutic management of hepatitis C across all prevalent genotypes. Most of the chemical matter in these regimens comprises molecules well outside the traditional drug development chemical space and presents significant challenges. Herein, the implications of high conformational flexibility and the presence of a 15-membered macrocyclic ring in paritaprevir are studied through a combination of advanced computational and experimental methods with focus on molecular chameleonicity and crystal form complexity. The ability of the molecule to toggle between high and low 3D polar surface area (PSA) conformations is underpinned by intramolecular hydrogen bonding (IMHB) interactions and intramolecular steric effects. Computational studies consequently show a very significant difference of over 75 Å2 in 3D PSA between polar and apolar environments and provide the structural basis for the perplexingly favorable passive permeability of the molecule. Crystal packing and protein binding resulting in strong intermolecular interactions disrupt these intramolecular interactions. Crystalline Form I benefits from strong intermolecular interactions, whereas the weaker intermolecular interactions in Form II are partially compensated by the energetic advantage of an IMHB. Like Form I, no IMHB is observed within the receptor-bound conformation; instead, an intermolecular H-bond contributes to the potency of the molecule. The choice of metastable Form II is derisked through strategies accounting for crystal surface and packing features to manage higher form specific solid-state chemical reactivity and specific processing requirements. Overall, the results show an unambiguous link between structural features and derived properties from crystallization to dissolution, permeation, and docking into the protein pocket.
Collapse
Affiliation(s)
- Ahmad Y Sheikh
- Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Alessandra Mattei
- Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Rajni Miglani Bhardwaj
- Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Richard S Hong
- Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Nathan S Abraham
- Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Gabriela Schneider-Rauber
- Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kenneth M Engstrom
- Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Moiz Diwan
- Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Rodger F Henry
- Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yi Gao
- Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Vivian Juarez
- Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Erin Jordan
- Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - David A DeGoey
- Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| | - Charles W Hutchins
- Research & Development, AbbVie Inc., 1 N Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
12
|
Wang S, König G, Roth HJ, Fouché M, Rodde S, Riniker S. Effect of Flexibility, Lipophilicity, and the Location of Polar Residues on the Passive Membrane Permeability of a Series of Cyclic Decapeptides. J Med Chem 2021; 64:12761-12773. [PMID: 34406766 DOI: 10.1021/acs.jmedchem.1c00775] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclic peptides have received increasing attention over the recent years as potential therapeutics for "undruggable" targets. One major obstacle is, however, their often relatively poor bioavailability. Here, we investigate the structure-permeability relationship of 24 cyclic decapeptides that share the same backbone N-methylation pattern but differ in their side chains. The peptides cover a large range of values for passive membrane permeability as well as lipophilicity and solubility. To rationalize the observed differences in permeability, we extracted for each peptide the population of the membrane-permeable conformation in water from extensive explicit-solvent molecular dynamics simulations and used this as a metric for conformational rigidity or "prefolding." The insights from the simulations together with lipophilicity measurements highlight the intricate interplay between polarity/lipophilicity and flexibility/rigidity and the possible compensating effects on permeability. The findings allow us to better understand the structure-permeability relationship of cyclic peptides and extract general guiding principles.
Collapse
Affiliation(s)
- Shuzhe Wang
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Gerhard König
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Hans-Jörg Roth
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Marianne Fouché
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Stephane Rodde
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
13
|
Takahashi T, Matsui T, Hengphasatporn K, Shigeta Y. A Practical Prediction of Log Po/w through Semiempirical Electronic Structure Calculations with Dielectric Continuum Model. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Teruyuki Takahashi
- Department of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8571, Japan
| | - Toru Matsui
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8571, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8571, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8571, Japan
| |
Collapse
|
14
|
Begnini F, Poongavanam V, Atilaw Y, Erdelyi M, Schiesser S, Kihlberg J. Cell Permeability of Isomeric Macrocycles: Predictions and NMR Studies. ACS Med Chem Lett 2021; 12:983-990. [PMID: 34136079 PMCID: PMC8201747 DOI: 10.1021/acsmedchemlett.1c00126] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Abstract
![]()
Conformation-dependent 3D descriptors
have been shown to provide
better predictions of the physicochemical properties of macrocycles
than 2D descriptors. However, the computational identification of
relevant conformations for macrocycles is nontrivial. Herein, we report
that the Caco-2 cell permeability difference between a pair of diastereomeric
macrocycles correlated with their solvent accessible 3D polar surface
area and radius of gyration. The descriptors were calculated from
the macrocycles’ solution-phase conformational ensembles and
independently from ensembles obtained by conformational sampling.
Calculation of the two descriptors for three other stereo- and regioisomeric
macrocycles also allowed the correct ranking of their cell permeability.
Methods for conformational sampling may thus allow ranking of passive
permeability for moderately flexible macrocycles, thereby contributing
to the prioritization of macrocycles for synthesis in lead optimization.
Collapse
Affiliation(s)
- Fabio Begnini
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | | | - Yoseph Atilaw
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Mate Erdelyi
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Stefan Schiesser
- Department of Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Jan Kihlberg
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| |
Collapse
|
15
|
Reyes Romero A, Ruiz-Moreno AJ, Groves MR, Velasco-Velázquez M, Dömling A. Benchmark of Generic Shapes for Macrocycles. J Chem Inf Model 2020; 60:6298-6313. [PMID: 33270455 PMCID: PMC7768607 DOI: 10.1021/acs.jcim.0c01038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Macrocycles
target proteins that are otherwise considered undruggable
because of a lack of hydrophobic cavities and the presence of extended
featureless surfaces. Increasing efforts by computational chemists
have developed effective software to overcome the restrictions of
torsional and conformational freedom that arise as a consequence of
macrocyclization. Moloc is an efficient algorithm, with an emphasis
on high interactivity, and has been constantly updated since 1986
by drug designers and crystallographers of the Roche biostructural
community. In this work, we have benchmarked the shape-guided algorithm
using a dataset of 208 macrocycles, carefully selected on the basis
of structural complexity. We have quantified the accuracy, diversity,
speed, exhaustiveness, and sampling efficiency in an automated fashion
and we compared them with four commercial (Prime, MacroModel, molecular
operating environment, and molecular dynamics) and four open-access
(experimental-torsion distance geometry with additional “basic
knowledge” alone and with Merck molecular force field minimization
or universal force field minimization, Cambridge Crystallographic
Data Centre conformer generator, and conformator) packages. With three-quarters
of the database processed below the threshold of high ring accuracy,
Moloc was identified as having the highest sampling efficiency and
exhaustiveness without producing thousands of conformations, random
ring splitting into two half-loops, and possibility to interactively
produce globular or flat conformations with diversity similar to Prime,
MacroModel, and molecular dynamics. The algorithm and the Python scripts
for full automatization of these parameters are freely available for
academic use.
Collapse
Affiliation(s)
- Atilio Reyes Romero
- Drug Design, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, XB20, 9713 AV Groningen, The Netherlands
| | - Angel Jonathan Ruiz-Moreno
- Drug Design, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, XB20, 9713 AV Groningen, The Netherlands.,Departamento de Farmacología y Unidad Periférica de Investigación en Biomedicina Trasnacional, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, Ciudad Universitaria, 04510 Ciudad de México, Mexico.,Programa de Doctorado en Ciencias Biomédicas, UNAM, Av. Universidad 3000, Circuito Exterior S/N. Delegación Coyoacán, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Matthew R Groves
- Drug Design, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, XB20, 9713 AV Groningen, The Netherlands
| | - Marco Velasco-Velázquez
- Departamento de Farmacología y Unidad Periférica de Investigación en Biomedicina Trasnacional, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3000, Circuito Exterior S/N, Delegación Coyoacán, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Alexander Dömling
- Drug Design, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, XB20, 9713 AV Groningen, The Netherlands
| |
Collapse
|