1
|
Cheng-Sánchez I, Gosselé K, Palaferri L, Laul E, Riccabella G, Bedi RK, Li Y, Müller A, Corbeski I, Caflisch A, Nevado C. Structure-Based Design of CBP/EP300 Degraders: When Cooperativity Overcomes Affinity. JACS AU 2024; 4:3466-3474. [PMID: 39328757 PMCID: PMC11423305 DOI: 10.1021/jacsau.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 09/28/2024]
Abstract
We present the development of dCE-2, a structurally novel PROTAC targeting the CREB-binding protein (CBP) and E1A-associated protein (EP300)-two homologous multidomain enzymes crucial for enhancer-mediated transcription. The design of dCE-2 was based on the crystal structure of an in-house bromodomain (BRD) inhibitor featuring a 3-methyl-cinnoline acetyl-lysine mimic acetyl-lysine mimic discovered by high-throughput fragment docking. Our study shows that, despite its modest binding affinity to CBP/EP300-BRD, dCE-2's remarkable protein degradation activity stems from its good cooperativity, which we demonstrate by the characterization of its ternary complex formation both in vitro and in cellulo. Molecular dynamics simulations indicate that in aqueous solvents, this active degrader populates both folded and extended conformations, which are likely to promote cell permeability and ternary complex formation, respectively.
Collapse
Affiliation(s)
- Iván Cheng-Sánchez
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Katherine Gosselé
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Leonardo Palaferri
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Eleen Laul
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Gionata Riccabella
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Rajiv K Bedi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Yaozong Li
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Anna Müller
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Ivan Corbeski
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| |
Collapse
|
2
|
Nai F, Flores Espinoza MP, Invernizzi A, Vargas-Rosales PA, Bobileva O, Herok M, Caflisch A. Small-Molecule Inhibitors of the m7G-RNA Writer METTL1. ACS BIO & MED CHEM AU 2024; 4:100-110. [PMID: 38645929 PMCID: PMC11027120 DOI: 10.1021/acsbiomedchemau.3c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 04/23/2024]
Abstract
We discovered the first inhibitors of the m7G-RNA writer METTL1 by high-throughput docking and an enzymatic assay based on luminescence. Eleven compounds, which belong to three different chemotypes, show inhibitory activity in the range 40-300 μM. Two adenine derivatives identified by docking have very favorable ligand efficiency of 0.34 and 0.31 kcal/mol per non-hydrogen atom, respectively. Molecular dynamics simulations provide evidence that the inhibitors compete with the binding of the cosubstrate S-adenosyl methionine to METTL1. We also present a soakable crystal form that was used to determine the structure of the complex of METTL1 with sinefungin at a resolution of 1.85 Å.
Collapse
Affiliation(s)
- Francesco Nai
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Annalisa Invernizzi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Olga Bobileva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Marcin Herok
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
3
|
Flachsenberg F, Ehrt C, Gutermuth T, Rarey M. Redocking the PDB. J Chem Inf Model 2024; 64:219-237. [PMID: 38108627 DOI: 10.1021/acs.jcim.3c01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Molecular docking is a standard technique in structure-based drug design (SBDD). It aims to predict the 3D structure of a small molecule in the binding site of a receptor (often a protein). Despite being a common technique, it often necessitates multiple tools and involves manual steps. Here, we present the JAMDA preprocessing and docking workflow that is easy to use and allows fully automated docking. We evaluate the JAMDA docking workflow on binding sites extracted from the complete PDB and derive key factors determining JAMDA's docking performance. With that, we try to remove most of the bias due to manual intervention and provide a realistic estimate of the redocking performance of our JAMDA preprocessing and docking workflow for any PDB structure. On this large PDBScan22 data set, our JAMDA workflow finds a pose with an RMSD of at most 2 Å to the crystal ligand on the top rank for 30.1% of the structures. When applying objective structure quality filters to the PDBScan22 data set, the success rate increases to 61.8%. Given the prepared structures from the JAMDA preprocessing pipeline, both JAMDA and the widely used AutoDock Vina perform comparably on this filtered data set (the PDBScan22-HQ data set).
Collapse
Affiliation(s)
- Florian Flachsenberg
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| | - Christiane Ehrt
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| | - Torben Gutermuth
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| | - Matthias Rarey
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| |
Collapse
|
4
|
Dalle Vedove A, Cazzanelli G, Batiste L, Marchand JR, Spiliotopoulos D, Corsi J, D’Agostino VG, Caflisch A, Lolli G. Identification of a BAZ2A-Bromodomain Hit Compound by Fragment Growing. ACS Med Chem Lett 2022; 13:1434-1443. [PMID: 36105334 PMCID: PMC9465710 DOI: 10.1021/acsmedchemlett.2c00173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BAZ2A is an epigenetic regulator affecting transcription of ribosomal RNA. It is overexpressed in aggressive and recurrent prostate cancer, promoting cellular migration. Its bromodomain is characterized by a shallow and difficult-to-drug pocket. Here, we describe a structure-based fragment-growing campaign for the identification of ligands of the BAZ2A bromodomain. By combining docking, competition binding assays, and protein crystallography, we have extensively explored the interactions of the ligands with the rim of the binding pocket, and in particular ionic interactions with the side chain of Glu1820, which is unique to BAZ2A. We present 23 high-resolution crystal structures of the holo BAZ2A bromodomain and analyze common bromodomain/ligand motifs and favorable intraligand interactions. Binding of some of the compounds is enantiospecific, with affinity in the low micromolar range. The most potent ligand has an equilibrium dissociation constant of 7 μM and a good selectivity over the paralog BAZ2B bromodomain.
Collapse
Affiliation(s)
- Andrea Dalle Vedove
- Department
of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, via Sommarive 9, 38123 Povo - Trento, Italy
| | - Giulia Cazzanelli
- Department
of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, via Sommarive 9, 38123 Povo - Trento, Italy
| | - Laurent Batiste
- Department
of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Jean-Rémy Marchand
- Department
of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Dimitrios Spiliotopoulos
- Department
of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Jessica Corsi
- Department
of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, via Sommarive 9, 38123 Povo - Trento, Italy
| | - Vito Giuseppe D’Agostino
- Department
of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, via Sommarive 9, 38123 Povo - Trento, Italy
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Graziano Lolli
- Department
of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, via Sommarive 9, 38123 Povo - Trento, Italy
| |
Collapse
|
5
|
de Esch IJP, Erlanson DA, Jahnke W, Johnson CN, Walsh L. Fragment-to-Lead Medicinal Chemistry Publications in 2020. J Med Chem 2022; 65:84-99. [PMID: 34928151 PMCID: PMC8762670 DOI: 10.1021/acs.jmedchem.1c01803] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 12/28/2022]
Abstract
Fragment-based drug discovery (FBDD) continues to evolve and make an impact in the pharmaceutical sciences. We summarize successful fragment-to-lead studies that were published in 2020. Having systematically analyzed annual scientific outputs since 2015, we discuss trends and best practices in terms of fragment libraries, target proteins, screening technologies, hit-optimization strategies, and the properties of hit fragments and the leads resulting from them. As well as the tabulated Fragment-to-Lead (F2L) programs, our 2020 literature review identifies several trends and innovations that promise to further increase the success of FBDD. These include developing structurally novel screening fragments, improving fragment-screening technologies, using new computer-aided design and virtual screening approaches, and combining FBDD with other innovative drug-discovery technologies.
Collapse
Affiliation(s)
- Iwan J. P. de Esch
- Division
of Medicinal Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Daniel A. Erlanson
- Frontier
Medicines, 151 Oyster
Point Blvd., South San Francisco, California 94080, United States
| | - Wolfgang Jahnke
- Novartis
Institutes for Biomedical Research, Chemical
Biology and Therapeutics, 4002 Basel, Switzerland
| | - Christopher N. Johnson
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Louise Walsh
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
6
|
Dalle Vedove A, Cazzanelli G, Corsi J, Sedykh M, D’Agostino VG, Caflisch A, Lolli G. Identification of a BAZ2A Bromodomain Hit Compound by Fragment Joining. ACS BIO & MED CHEM AU 2021; 1:5-10. [PMID: 36147311 PMCID: PMC9484724 DOI: 10.1021/acsbiomedchemau.1c00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Andrea Dalle Vedove
- Department of Cellular, Computational and Integrative Biology - CIBio, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Giulia Cazzanelli
- Department of Cellular, Computational and Integrative Biology - CIBio, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Jessica Corsi
- Department of Cellular, Computational and Integrative Biology - CIBio, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Maria Sedykh
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Vito Giuseppe D’Agostino
- Department of Cellular, Computational and Integrative Biology - CIBio, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Graziano Lolli
- Department of Cellular, Computational and Integrative Biology - CIBio, University of Trento, via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
7
|
Wang ZZ, Shi XX, Huang GY, Hao GF, Yang GF. Fragment-based drug design facilitates selective kinase inhibitor discovery. Trends Pharmacol Sci 2021; 42:551-565. [PMID: 33958239 DOI: 10.1016/j.tips.2021.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
Protein kinases (PKs) are important drug targets, but kinases selectivity poses a challenge to protein kinase inhibitors (PKIs) design. Fragment-based drug discovery (FBDD) has achieved great success in the discovery of highly specific PKIs. It makes full use of kinase-fragment interaction in target kinase subpockets to obtain promising selectivity. However, it's difficult to understand the complicated kinase-fragment interaction space, and systemic discussion of these interactions is still lacking. Herein, we introduce the advantages of the FBDD strategy in PKIs design. Key features of the selectivity of kinase-fragment interactions are summarized and analyzed. Some promising PKIs are introduced as case studies to help understand the fragment-to-lead (F2L) optimization process. Novel strategies and technologies for FBDD in PKIs discovery are also outlooked.
Collapse
Affiliation(s)
- Zhi-Zheng Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Xing-Xing Shi
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Guang-Yi Huang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
8
|
Schuller M, Correy GJ, Gahbauer S, Fearon D, Wu T, Díaz RE, Young ID, Martins LC, Smith DH, Schulze-Gahmen U, Owens TW, Deshpande I, Merz GE, Thwin AC, Biel JT, Peters JK, Moritz M, Herrera N, Kratochvil HT, Aimon A, Bennett JM, Neto JB, Cohen AE, Dias A, Douangamath A, Dunnett L, Fedorov O, Ferla MP, Fuchs M, Gorrie-Stone TJ, Holton JM, Johnson MG, Krojer T, Meigs G, Powell AJ, Rangel VL, Russi S, Skyner RE, Smith CA, Soares AS, Wierman JL, Zhu K, Jura N, Ashworth A, Irwin J, Thompson MC, Gestwicki JE, von Delft F, Shoichet BK, Fraser JS, Ahel I. Fragment Binding to the Nsp3 Macrodomain of SARS-CoV-2 Identified Through Crystallographic Screening and Computational Docking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.24.393405. [PMID: 33269349 PMCID: PMC7709169 DOI: 10.1101/2020.11.24.393405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.
Collapse
Affiliation(s)
- Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco, CA, USA
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Taiasean Wu
- Institute for Neurodegenerative Disease, University of California San Francisco, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, CA, USA
| | - Roberto Efraín Díaz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA, USA
- Tetrad Graduate Program, University of California San Francisco, CA, USA
| | - Iris D. Young
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Luan Carvalho Martins
- Biochemistry Department, Institute for Biological Sciences, Federal University of Minas Gerais. Belo Horizonte, Brazil
| | - Dominique H. Smith
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, CA, USA
| | - Ursula Schulze-Gahmen
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Tristan W. Owens
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Ishan Deshpande
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Gregory E. Merz
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Aye C. Thwin
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Justin T. Biel
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Jessica K. Peters
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Michelle Moritz
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Nadia Herrera
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Huong T. Kratochvil
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - QCRG Structural Biology Consortium
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Anthony Aimon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - James M. Bennett
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
| | - Jose Brandao Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Alexandre Dias
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Louise Dunnett
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Oleg Fedorov
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
| | - Matteo P. Ferla
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Martin Fuchs
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Tyler J. Gorrie-Stone
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - James M. Holton
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, CA, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Tobias Krojer
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
| | - George Meigs
- Department of Biochemistry and Biophysics, University of California San Francisco, CA, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ailsa J. Powell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | | | - Victor L Rangel
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Rachael E. Skyner
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | | | - Jennifer L. Wierman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Natalia Jura
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, CA, USA
| | - John Irwin
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco, CA, USA
| | - Michael C. Thompson
- Department of Chemistry and Chemical Biology, University of California Merced, CA, USA
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco, CA, USA
- Institute for Neurodegenerative Disease, University of California San Francisco, CA, USA
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco, CA, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|