• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643695)   Today's Articles (243)   Subscriber (50613)
For: Llinas A, Oprisiu I, Avdeef A. Findings of the Second Challenge to Predict Aqueous Solubility. J Chem Inf Model 2020;60:4791-4803. [DOI: 10.1021/acs.jcim.0c00701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Number Cited by Other Article(s)
1
Ahmad W, Chong KT, Tayara H. GGAS2SN: Gated Graph and SmilesToSeq Network for Solubility Prediction. J Chem Inf Model 2024;64:7833-7843. [PMID: 39387596 DOI: 10.1021/acs.jcim.4c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
2
Zhao J, Hermans E, Sepassi K, Tistaert C, Bergström CAS, Ahmad M, Larsson P. Effect of Data Quality and Data Quantity on the Estimation of Intrinsic Solubility: Analysis Based on a Single-Source Data Set. Mol Pharm 2024;21:5261-5271. [PMID: 39267585 PMCID: PMC11462503 DOI: 10.1021/acs.molpharmaceut.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
3
Zheng T, Mitchell JBO, Dobson S. Revisiting the Application of Machine Learning Approaches in Predicting Aqueous Solubility. ACS OMEGA 2024;9:35209-35222. [PMID: 39157153 PMCID: PMC11325511 DOI: 10.1021/acsomega.4c06163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
4
Ramani V, Karmakar T. Graph Neural Networks for Predicting Solubility in Diverse Solvents Using MolMerger Incorporating Solute-Solvent Interactions. J Chem Theory Comput 2024. [PMID: 39041858 DOI: 10.1021/acs.jctc.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
5
Li T, Huls NJ, Lu S, Hou P. Unsupervised manifold embedding to encode molecular quantum information for supervised learning of chemical data. Commun Chem 2024;7:133. [PMID: 38862828 PMCID: PMC11166954 DOI: 10.1038/s42004-024-01217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]  Open
6
Wang W, Tang J, Zaliani A. Outline and background for the EU-OS solubility prediction challenge. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024;29:100155. [PMID: 38518955 DOI: 10.1016/j.slasd.2024.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
7
Ramos MC, White AD. Predicting small molecules solubility on endpoint devices using deep ensemble neural networks. DIGITAL DISCOVERY 2024;3:786-795. [PMID: 38638648 PMCID: PMC11022985 DOI: 10.1039/d3dd00217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/07/2024] [Indexed: 04/20/2024]
8
Llompart P, Minoletti C, Baybekov S, Horvath D, Marcou G, Varnek A. Will we ever be able to accurately predict solubility? Sci Data 2024;11:303. [PMID: 38499581 PMCID: PMC10948805 DOI: 10.1038/s41597-024-03105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 03/20/2024]  Open
9
Hunklinger A, Hartog P, Šícho M, Godin G, Tetko IV. The openOCHEM consensus model is the best-performing open-source predictive model in the First EUOS/SLAS joint compound solubility challenge. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024;29:100144. [PMID: 38316342 DOI: 10.1016/j.slasd.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
10
Baybekov S, Llompart P, Marcou G, Gizzi P, Galzi JL, Ramos P, Saurel O, Bourban C, Minoletti C, Varnek A. Kinetic solubility: Experimental and machine-learning modeling perspectives. Mol Inform 2024;43:e202300216. [PMID: 38149685 DOI: 10.1002/minf.202300216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/25/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
11
Kim Y, Jung H, Kumar S, Paton RS, Kim S. Designing solvent systems using self-evolving solubility databases and graph neural networks. Chem Sci 2024;15:923-939. [PMID: 38239675 PMCID: PMC10793204 DOI: 10.1039/d3sc03468b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024]  Open
12
Ahmad W, Tayara H, Shim H, Chong KT. SolPredictor: Predicting Solubility with Residual Gated Graph Neural Network. Int J Mol Sci 2024;25:715. [PMID: 38255790 PMCID: PMC10815788 DOI: 10.3390/ijms25020715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]  Open
13
Hong RS, Rojas AV, Bhardwaj RM, Wang L, Mattei A, Abraham NS, Cusack KP, Pierce MO, Mondal S, Mehio N, Bordawekar S, Kym PR, Abel R, Sheikh AY. Free Energy Perturbation Approach for Accurate Crystalline Aqueous Solubility Predictions. J Med Chem 2023;66:15883-15893. [PMID: 38016916 DOI: 10.1021/acs.jmedchem.3c01339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
14
Ghahremanpour MM, Saar A, Tirado-Rives J, Jorgensen WL. Ensemble Geometric Deep Learning of Aqueous Solubility. J Chem Inf Model 2023;63:7338-7349. [PMID: 37990484 DOI: 10.1021/acs.jcim.3c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
15
Gheta SKO, Bonin A, Gerlach T, Göller AH. Predicting absolute aqueous solubility by applying a machine learning model for an artificially liquid-state as proxy for the solid-state. J Comput Aided Mol Des 2023;37:765-789. [PMID: 37878216 DOI: 10.1007/s10822-023-00538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
16
Tran TTV, Tayara H, Chong KT. Recent Studies of Artificial Intelligence on In Silico Drug Absorption. J Chem Inf Model 2023;63:6198-6211. [PMID: 37819031 DOI: 10.1021/acs.jcim.3c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
17
Zhu X, Polyakov VR, Bajjuri K, Hu H, Maderna A, Tovee CA, Ward SC. Building Machine Learning Small Molecule Melting Points and Solubility Models Using CCDC Melting Points Dataset. J Chem Inf Model 2023;63:2948-2959. [PMID: 37125691 DOI: 10.1021/acs.jcim.3c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
18
Conn JM, Carter JW, Conn JJA, Subramanian V, Baxter A, Engkvist O, Llinas A, Ratkova EL, Pickett SD, McDonagh JL, Palmer DS. Blinded Predictions and Post Hoc Analysis of the Second Solubility Challenge Data: Exploring Training Data and Feature Set Selection for Machine and Deep Learning Models. J Chem Inf Model 2023;63:1099-1113. [PMID: 36758178 PMCID: PMC9976279 DOI: 10.1021/acs.jcim.2c01189] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
19
Cysewski P, Jeliński T, Przybyłek M, Nowak W, Olczak M. Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media. Pharmaceutics 2022;14:pharmaceutics14122828. [PMID: 36559321 PMCID: PMC9781932 DOI: 10.3390/pharmaceutics14122828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]  Open
20
Oja M, Sild S, Piir G, Maran U. Intrinsic Aqueous Solubility: Mechanistically Transparent Data-Driven Modeling of Drug Substances. Pharmaceutics 2022;14:pharmaceutics14102248. [PMID: 36297685 PMCID: PMC9611068 DOI: 10.3390/pharmaceutics14102248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]  Open
21
Avdeef A, Kansy M. Trends in PhysChem Properties of Newly Approved Drugs over the Last Six Years; Predicting Solubility of Drugs Approved in 2021. J SOLUTION CHEM 2022. [DOI: 10.1007/s10953-022-01199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
22
Panapitiya G, Girard M, Hollas A, Sepulveda J, Murugesan V, Wang W, Saldanha E. Evaluation of Deep Learning Architectures for Aqueous Solubility Prediction. ACS OMEGA 2022;7:15695-15710. [PMID: 35571767 PMCID: PMC9096921 DOI: 10.1021/acsomega.2c00642] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/11/2022] [Indexed: 05/17/2023]
23
Wellawatte GP, Seshadri A, White AD. Model agnostic generation of counterfactual explanations for molecules. Chem Sci 2022;13:3697-3705. [PMID: 35432902 PMCID: PMC8966631 DOI: 10.1039/d1sc05259d] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/06/2022] [Indexed: 11/25/2022]  Open
24
Avdeef A, Kansy M. Predicting Solubility of Newly-Approved Drugs (2016–2020) with a Simple ABSOLV and GSE(Flexible-Acceptor) Consensus Model Outperforming Random Forest Regression. J SOLUTION CHEM 2022;51:1020-1055. [PMID: 35153342 PMCID: PMC8818506 DOI: 10.1007/s10953-022-01141-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022]
25
Avdeef A, Sugano K. Salt Solubility and Disproportionation - Uses and Limitations of Equations for pHmax and the In-silico Prediction of pHmax. J Pharm Sci 2021;111:225-246. [PMID: 34863819 DOI: 10.1016/j.xphs.2021.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
26
Tosca EM, Bartolucci R, Magni P. Application of Artificial Neural Networks to Predict the Intrinsic Solubility of Drug-Like Molecules. Pharmaceutics 2021;13:1101. [PMID: 34371792 PMCID: PMC8309152 DOI: 10.3390/pharmaceutics13071101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/25/2022]  Open
27
Falcón-Cano G, Molina C, Cabrera-Pérez MÁ. ADME prediction with KNIME: A retrospective contribution to the second "Solubility Challenge". ADMET AND DMPK 2021;9:209-218. [PMID: 35300359 PMCID: PMC8920098 DOI: 10.5599/admet.979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/21/2021] [Indexed: 12/12/2022]  Open
28
Francoeur PG, Koes DR. SolTranNet-A Machine Learning Tool for Fast Aqueous Solubility Prediction. J Chem Inf Model 2021;61:2530-2536. [PMID: 34038123 DOI: 10.1021/acs.jcim.1c00331] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
29
Sorkun MC, Koelman JVA, Er S. Pushing the limits of solubility prediction via quality-oriented data selection. iScience 2021;24:101961. [PMID: 33437941 PMCID: PMC7788089 DOI: 10.1016/j.isci.2020.101961] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/18/2020] [Accepted: 12/15/2020] [Indexed: 01/19/2023]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA