1
|
Vithani N, Zhang S, Thompson JP, Patel LA, Demidov A, Xia J, Balaeff A, Mentes A, Arnautova YA, Kohlmann A, Lawson JD, Nicholls A, Skillman AG, LeBard DN. Exploration of Cryptic Pockets Using Enhanced Sampling Along Normal Modes: A Case Study of KRAS G12D. J Chem Inf Model 2024; 64:8258-8273. [PMID: 39419500 PMCID: PMC11558672 DOI: 10.1021/acs.jcim.4c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Identification of cryptic pockets has the potential to open new therapeutic opportunities by discovering ligand binding sites that remain hidden in static apo structures of a target protein. Moreover, allosteric cryptic pockets can become valuable for designing target-selective ligands when the natural ligand binding sites are conserved in variants of a protein. For example, before an allosteric cryptic pocket was discovered, KRAS was considered undruggable due to its smooth surface and conservation of the GDP/GTP binding pocket across the wild type and oncogenic isoforms. Recent identification of the Switch-II cryptic pocket in the KRASG12C mutant and FDA approval of anticancer drugs targeting this site underscores the importance of cryptic pockets in solving pharmaceutical challenges. Here, we present a newly developed approach for the exploration of cryptic pockets using weighted ensemble molecular dynamics simulations with inherent normal modes as progress coordinates applied to the wild type KRAS and the G12D mutant. We performed extensive all-atomic simulations (>400 μs) with and without several cosolvents (xenon, ethanol, benzene), and analyzed trajectories using three distinct methods to search for potential binding pockets. These methods have been applied as a proof-of-concept to KRAS and have shown they can predict known cryptic binding sites. Furthermore, we performed ligand-binding simulations of a known inhibitor (MRTX1133) to shed light on the nature of cryptic pockets in KRASG12D and the role of conformational selection vs induced-fit mechanism in the formation of these cryptic pockets.
Collapse
Affiliation(s)
- Neha Vithani
- OpenEye,
Cadence Molecular Sciences, Santa Fe, New Mexico 87508, United States
| | - She Zhang
- OpenEye,
Cadence Molecular Sciences, Santa Fe, New Mexico 87508, United States
| | - Jeffrey P. Thompson
- OpenEye,
Cadence Molecular Sciences, Santa Fe, New Mexico 87508, United States
| | - Lara A. Patel
- OpenEye,
Cadence Molecular Sciences, Santa Fe, New Mexico 87508, United States
| | - Alex Demidov
- OpenEye,
Cadence Molecular Sciences, Santa Fe, New Mexico 87508, United States
| | - Junchao Xia
- OpenEye,
Cadence Molecular Sciences, Santa Fe, New Mexico 87508, United States
| | - Alexander Balaeff
- Black
Diamond Therapeutics, Cambridge, Massachusetts 02142, United States
| | - Ahmet Mentes
- Black
Diamond Therapeutics, Cambridge, Massachusetts 02142, United States
| | | | - Anna Kohlmann
- Black
Diamond Therapeutics, Cambridge, Massachusetts 02142, United States
| | - J. David Lawson
- Mirati
Therapeutics, Inc., San Diego, California 92121, United States
| | - Anthony Nicholls
- OpenEye,
Cadence Molecular Sciences, Santa Fe, New Mexico 87508, United States
| | | | - David N. LeBard
- OpenEye,
Cadence Molecular Sciences, Santa Fe, New Mexico 87508, United States
| |
Collapse
|
2
|
Bruciaferri N, Eberhardt J, Llanos MA, Loeffler JR, Holcomb M, Fernandez-Quintero ML, Santos-Martins D, Ward AB, Forli S. CosolvKit: a Versatile Tool for Cosolvent MD Preparation and Analysis. J Chem Inf Model 2024; 64:8227-8235. [PMID: 39436011 DOI: 10.1021/acs.jcim.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Cosolvent molecular dynamics (MDs) are an increasingly popular form of simulations where small molecule cosolvents are added to water-solvated protein systems. These simulations can perform diverse target characterization tasks, including cryptic and allosteric pocket identification and pharmacophore profiling and supplement suites of enhanced sampling methods to explore protein conformational landscapes. The behavior of these systems is tied to the cosolvents used, so the ability to define diverse and complex mixtures is critical in dictating the outcome of the simulations. However, existing methods for preparing cosolvent simulations only support a limited number of predefined cosolvents and concentrations. Here, we present CosolvKit, a tool for the preparation and analysis of systems composed of user-defined cosolvents and concentrations. This tool is modular, supporting the creation of files for multiple MD engines, as well as direct access to OpenMM simulations, and offering access to a variety of generalizable small-molecule force fields. To the best of our knowledge, CosolvKit represents the first generalized approach for the construction of these simulations.
Collapse
Affiliation(s)
- Niccolo' Bruciaferri
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Jerome Eberhardt
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
- Biozentrum, University of Basel, Spitalstrasse 41, Basel 4056, Switzerland
| | - Manuel A Llanos
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Johannes R Loeffler
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Matthew Holcomb
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Monica L Fernandez-Quintero
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Diogo Santos-Martins
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Zhao M, Yu W, MacKerell AD. Enhancing SILCS-MC via GPU Acceleration and Ligand Conformational Optimization with Genetic and Parallel Tempering Algorithms. J Phys Chem B 2024; 128:7362-7375. [PMID: 39031121 PMCID: PMC11294009 DOI: 10.1021/acs.jpcb.4c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
In the domain of computer-aided drug design, achieving precise and accurate estimates of ligand-protein binding is paramount in the context of screening extensive drug libraries and performing ligand optimization. A fundamental aspect of the SILCS (site identification by ligand competitive saturation) methodology lies in the generation of comprehensive 3D free-energy functional group affinity maps (FragMaps), encompassing the entirety of the target molecule structure. These FragMaps offer an intricate landscape of functional group affinities across the protein, bilayer, or RNA, acting as the basis for subsequent SILCS-Monte Carlo (MC) simulations wherein ligands are docked to the target molecule. To augment the efficiency and breadth of ligand sampling capabilities, we implemented an improved SILCS-MC methodology. By harnessing the parallel computing capability of GPUs, our approach facilitates concurrent calculations over multiple ligands and binding sites, markedly enhancing the computational efficiency. Moreover, the integration of a genetic algorithm (GA) with MC allows us to employ an evolutionary approach to perform ligand sampling, assuring enhanced convergence characteristics. In addition, the potential utility of parallel tempering (PT) to improve sampling was investigated. Implementation of SILCS-MC on GPU architecture is shown to accelerate the speed of SILCS-MC calculations by over 2-orders of magnitude. Use of GA and PT yield improvements over Markov-chain MC, increasing the precision of the resultant docked orientations and binding free energies, though the extent of improvements is relatively small. Accordingly, significant improvements in speed are obtained through the GPU implementation with minor improvements in the precision of the docking obtained via the tested GA and PT algorithms.
Collapse
Affiliation(s)
- Mingtian Zhao
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, 20 Penn St., Baltimore, Maryland 21201, USA
| | - Wenbo Yu
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, 20 Penn St., Baltimore, Maryland 21201, USA
| | - Alexander D. MacKerell
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, 20 Penn St., Baltimore, Maryland 21201, USA
| |
Collapse
|
4
|
Kudo G, Yanagisawa K, Yoshino R, Hirokawa T. AAp-MSMD: Amino Acid Preference Mapping on Protein-Protein Interaction Surfaces Using Mixed-Solvent Molecular Dynamics. J Chem Inf Model 2023; 63:7768-7777. [PMID: 38085669 PMCID: PMC10751795 DOI: 10.1021/acs.jcim.3c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023]
Abstract
Peptides have attracted much attention recently owing to their well-balanced properties as drugs against protein-protein interaction (PPI) surfaces. Molecular simulation-based predictions of binding sites and amino acid residues with high affinity to PPI surfaces are expected to accelerate the design of peptide drugs. Mixed-solvent molecular dynamics (MSMD), which adds probe molecules or fragments of functional groups as solutes to the hydration model, detects the binding hotspots and cryptic sites induced by small molecules. The detection results vary depending on the type of probe molecule; thus, they provide important information for drug design. For rational peptide drug design using MSMD, we proposed MSMD with amino acid residue probes, named amino acid probe-based MSMD (AAp-MSMD), to detect hotspots and identify favorable amino acid types on protein surfaces to which peptide drugs bind. We assessed our method in terms of hotspot detection at the amino acid probe level and binding free energy prediction with amino acid probes at the PPI site for the complex structure that formed the PPI. In hotspot detection, the max-spatial probability distribution map (max-PMAP) obtained from AAp-MSMD detected the PPI site, to which each type of amino acid can bind favorably. In the binding free energy prediction using amino acid probes, ΔGFE obtained from AAp-MSMD roughly estimated the experimental binding affinities from the structure-activity relationship. AAp-MSMD, with amino acid probes, provides estimated binding sites and favorable amino acid types at the PPI site of a target protein.
Collapse
Affiliation(s)
- Genki Kudo
- Physics
Department, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Ibaraki Japan
| | - Keisuke Yanagisawa
- Department
of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro 152-8550, Tokyo Japan
- Middle
Molecule IT-based Drug Discovery Laboratory, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro 152-8550, Tokyo Japan
| | - Ryunosuke Yoshino
- Faculty
of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki Japan
- Transborder
Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki Japan
| | - Takatsugu Hirokawa
- Faculty
of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki Japan
- Transborder
Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki Japan
| |
Collapse
|
5
|
Barrera-Téllez FJ, Prieto-Martínez FD, Hernández-Campos A, Martínez-Mayorga K, Castillo-Bocanegra R. In Silico Exploration of the Trypanothione Reductase (TryR) of L. mexicana. Int J Mol Sci 2023; 24:16046. [PMID: 38003236 PMCID: PMC10671491 DOI: 10.3390/ijms242216046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Human leishmaniasis is a neglected tropical disease which affects nearly 1.5 million people every year, with Mexico being an important endemic region. One of the major defense mechanisms of these parasites is based in the polyamine metabolic pathway, as it provides the necessary compounds for its survival. Among the enzymes in this route, trypanothione reductase (TryR), an oxidoreductase enzyme, is crucial for the Leishmania genus' survival against oxidative stress. Thus, it poses as an attractive drug target, yet due to the size and features of its catalytic pocket, modeling techniques such as molecular docking focusing on that region is not convenient. Herein, we present a computational study using several structure-based approaches to assess the druggability of TryR from L. mexicana, the predominant Leishmania species in Mexico, beyond its catalytic site. Using this consensus methodology, three relevant pockets were found, of which the one we call σ-site promises to be the most favorable one. These findings may help the design of new drugs of trypanothione-related diseases.
Collapse
Affiliation(s)
- Francisco J. Barrera-Téllez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Fernando D. Prieto-Martínez
- Instituto de Química, Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz, Km. 4.5, Ucú 97357, Mexico
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Karina Martínez-Mayorga
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Mérida, Universidad Nacional Autónoma de México, Sierra Papacal, Mérida 97302, Mexico
| | - Rafael Castillo-Bocanegra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
6
|
Inverse Mixed-Solvent Molecular Dynamics for Visualization of the Residue Interaction Profile of Molecular Probes. Int J Mol Sci 2022; 23:ijms23094749. [PMID: 35563139 PMCID: PMC9103889 DOI: 10.3390/ijms23094749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
To ensure efficiency in discovery and development, the application of computational technology is essential. Although virtual screening techniques are widely applied in the early stages of drug discovery research, the computational methods used in lead optimization to improve activity and reduce the toxicity of compounds are still evolving. In this study, we propose a method to construct the residue interaction profile of the chemical structure used in the lead optimization by performing “inverse” mixed-solvent molecular dynamics (MSMD) simulation. Contrary to constructing a protein-based, atom interaction profile, we constructed a probe-based, protein residue interaction profile using MSMD trajectories. It provides us the profile of the preferred protein environments of probes without co-crystallized structures. We assessed the method using three probes: benzamidine, catechol, and benzene. As a result, the residue interaction profile of each probe obtained by MSMD was a reasonable physicochemical description of the general non-covalent interaction. Moreover, comparison with the X-ray structure containing each probe as a ligand shows that the map of the interaction profile matches the arrangement of amino acid residues in the X-ray structure.
Collapse
|
7
|
Alvarez-Garcia D, Schmidtke P, Cubero E, Barril X. Extracting Atomic Contributions to Binding Free Energy Using Molecular Dynamics Simulations with Mixed Solvents (MDmix). Curr Drug Discov Technol 2022; 19:62-68. [PMID: 34951392 PMCID: PMC9906626 DOI: 10.2174/1570163819666211223162829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mixed solvents MD (MDmix) simulations have proved to be a useful and increasingly accepted technique with several applications in structure-based drug discovery. One of the assumptions behind the methodology is the transferability of free energy values from the simulated cosolvent molecules to larger drug-like molecules. However, the binding free energy maps (ΔGbind) calculated for the different moieties of the cosolvent molecules (e.g. a hydroxyl map for the ethanol) are largely influenced by the rest of the solvent molecule and do not reflect the intrinsic affinity of the moiety in question. As such, they are hardly transferable to different molecules. METHOD To achieve transferable energies, we present here a method for decomposing the molecular binding free energy into accurate atomic contributions. RESULT We demonstrate with two qualitative visual examples how the corrected energy maps better match known binding hotspots and how they can reveal hidden hotspots with actual drug design potential. CONCLUSION Atomic decomposition of binding free energies derived from MDmix simulations provides transferable and quantitative binding free energy maps.
Collapse
Affiliation(s)
- Daniel Alvarez-Garcia
- Gain Therapeutics, Parc Cientific de Barcelona, Baldiri Reixac 10, 08029 Barcelona, Spain
| | - Peter Schmidtke
- Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain;,Current address: Discngine, 79 Avenue Ledru Rollin, 75012 Paris, France;
| | - Elena Cubero
- Gain Therapeutics, Parc Cientific de Barcelona, Baldiri Reixac 10, 08029 Barcelona, Spain
| | - Xavier Barril
- Gain Therapeutics, Parc Cientific de Barcelona, Baldiri Reixac 10, 08029 Barcelona, Spain;,Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain;,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain,Address correspondence to this author at the Gain Therapeutics, Parc Cientific de Barcelona, Baldiri Reixac 10, 08029 Barcelona, Spain; E-mail:
| |
Collapse
|
8
|
Goel H, Hazel A, Yu W, Jo S, MacKerell AD. Application of Site-Identification by Ligand Competitive Saturation in Computer-Aided Drug Design. NEW J CHEM 2022; 46:919-932. [PMID: 35210743 PMCID: PMC8863107 DOI: 10.1039/d1nj04028f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Site Identification by Ligand Competitive Saturation (SILCS) is a molecular simulation approach that uses diverse small solutes in aqueous solution to obtain functional group affinity patterns of a protein or other macromolecule. This involves employing a combined Grand Canonical Monte Carlo (GCMC)-molecular dynamics (MD) method to sample the full 3D space of the protein, including deep binding pockets and interior cavities from which functional group free energy maps (FragMaps) are obtained. The information content in the maps, which include contributions from protein flexibilty and both protein and functional group desolvation contributions, can be used in many aspects of the drug discovery process. These include identification of novel ligand binding pockets, including allosteric sites, pharmacophore modeling, prediction of relative protein-ligand binding affinities for database screening and lead optimization efforts, evaluation of protein-protein interactions as well as in the formulation of biologics-based drugs including monoclonal antibodies. The present article summarizes the various tools developed in the context of the SILCS methodology and their utility in computer-aided drug design (CADD) applications, showing how the SILCS toolset can improve the drug-development process on a number of fronts with respect to both accuracy and throughput representing a new avenue of CADD applications.
Collapse
Affiliation(s)
- Himanshu Goel
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St. Baltimore, Maryland 21201, United States
| | - Anthony Hazel
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St. Baltimore, Maryland 21201, United States
| | - Wenbo Yu
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St. Baltimore, Maryland 21201, United States
| | - Sunhwan Jo
- SilcsBio LLC, 1100 Wicomico St. Suite 323, Baltimore, MD, 21230, United States
| | - Alexander D. MacKerell
- Computer Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20, Penn St. Baltimore, Maryland 21201, United States., SilcsBio LLC, 1100 Wicomico St. Suite 323, Baltimore, MD, 21230, United States.,, Tel: 410-706-7442, Fax: 410-706-5017
| |
Collapse
|
9
|
Sabanés Zariquiey F, Jacoby E, Vos A, van Vlijmen HWT, Tresadern G, Harvey J. Divide and Conquer. Pocket-Opening Mixed-Solvent Simulations in the Perspective of Docking Virtual Screening Applications for Drug Discovery. J Chem Inf Model 2022; 62:533-543. [PMID: 35041430 DOI: 10.1021/acs.jcim.1c01164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The existence of a druggable binding pocket is a prerequisite for computational drug-target interaction studies including virtual screening. Retrospective studies have shown that extended sampling methods like Markov State Modeling and mixed-solvent simulations can identify cryptic pockets relevant for drug discovery. Here, we apply a combination of mixed-solvent molecular dynamics (MD) and time-structure independent component analysis (TICA) to four retrospective case studies: NPC2, the CECR2 bromodomain, TEM-1, and MCL-1. We compare previous experimental and computational findings to our results. It is shown that the successful identification of cryptic pockets depends on the system and the cosolvent probes. We used alternative TICA internal features such as the unbiased backbone coordinates or backbone dihedrals versus biased interatomic distances. We found that in the case of NPC2, TEM-1, and MCL-1, the use of unbiased features is able to identify cryptic pockets, although in the case of the CECR2 bromodomain, more specific features are required to properly capture a pocket opening. In the perspective of virtual screening applications, it is shown how docking studies with the parent ligands depend critically on the conformational state of the targets.
Collapse
Affiliation(s)
| | - Edgar Jacoby
- Computational Chemistry, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Ann Vos
- Computational Chemistry, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Herman W T van Vlijmen
- Computational Chemistry, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Gary Tresadern
- Computational Chemistry, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Jeremy Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|