1
|
Surwase AJ, Thakur NL. Production of marine-derived bioactive peptide molecules for industrial applications: A reverse engineering approach. Biotechnol Adv 2024; 77:108449. [PMID: 39260778 DOI: 10.1016/j.biotechadv.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/28/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
This review examines a wide range of marine microbial-derived bioactive peptide molecules, emphasizing the significance of reverse engineering in their production. The discussion encompasses the advancements in Marine Natural Products (MNPs) bio-manufacturing through the integration of omics-driven microbial engineering and bioinformatics. The distinctive features of non-ribosomally synthesised peptides (NRPs), and ribosomally synthesised precursor peptides (RiPP) biosynthesis is elucidated and presented. Additionally, the article delves into the origins of common peptide modifications. It highlights various genome mining approaches for the targeted identification of Biosynthetic Gene Clusters (BGCs) and novel RiPP and NRPs-derived peptides. The review aims to demonstrate the advancements, prospects, and obstacles in engineering both RiPP and NRP biosynthetic pathways.
Collapse
Affiliation(s)
- Akash J Surwase
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Narsinh L Thakur
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Grineva OV. Comparison of Intermolecular Halogen...Halogen Distances in Organic and Organometallic Crystals. Int J Mol Sci 2023; 24:11911. [PMID: 37569289 PMCID: PMC10419058 DOI: 10.3390/ijms241511911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Statistical analysis of halogen...halogen intermolecular distances was performed for three sets of homomolecular crystals under normal conditions: C-Hal1...Hal2-C distances in crystals consisting of: (i) organic compounds (set Org); (ii) organometallic compounds (set Orgmet); and (iii) distances M1-Hal1...Hal2-M2 (set MHal) (in all cases Hal1 = Hal2, and in MHal M1 = M2, M is any metal). When analyzing C-Hal...Hal-C distances, a new method for estimating the values of van der Waals radii is proposed, based on the use of two subsets of distances: (i) the shortest distances from each substance less than a threshold; and (ii) all C-Hal...Hal-C distances less than the same threshold. As initial approximations for these thresholds for different Hal, the Ragg values previously introduced in investigations with the participation of the author were used (Ragg values make it possible to perform a statistical assessment of the presence of halogen aggregates in crystals). The following values are recommended in this work to be used as universal values for crystals of organic and organometallic compounds: RF = 1.57, RCl = 1.90, RBr = 1.99, and RI = 2.15 Å. They are in excellent agreement with the results of some other works but significantly (by 0.10-0.17 Å) greater than the commonly used values. For the Orgmet set, slightly lower values for RI (2.11-2.09 Å) were obtained, but number of the C-I...I-C distances available for analysis was significantly smaller than in the other subgroups, which may be the reason for the discrepancy with value for the Org set (2.15 Å). Statistical analysis of the M-Hal...Hal-M distances was performed for the first time. A Hal-aggregation coefficient for M-Hal bonds is proposed, which allows one to estimate the propensity of M-Hal groups with certain M and Hal to participate in Hal-aggregates formed by M-Hal...Hal-M contacts. In particular, it was found that, for the Hg-Hal groups (Hal = Cl, Br, I), there is a high probability that the crystals have Hg-Hal...Hal-Hg distances with length ≤ Ragg.
Collapse
Affiliation(s)
- Olga V Grineva
- Chemistry Department, Moscow M. V. Lomonosov State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Mu K, Zhu Z, Abula A, Peng C, Zhu W, Xu Z. Halogen Bonds Exist between Noncovalent Ligands and Natural Nucleic Acids. J Med Chem 2022; 65:4424-4435. [PMID: 35276046 DOI: 10.1021/acs.jmedchem.1c01854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Because of their strong electron-rich properties, nucleic acids (NAs) can theoretically serve as halogen bond (XB) acceptors. From a PDB database survey, Kolář found that no XBs are formed between noncovalent ligands and NAs. Through statistical database analysis, quantum-mechanics/molecular-mechanics (QM/MM) optimizations, and energy calculations, we find that XBs formed between natural NAs and noncovalent ligands are primarily underestimated and that NAs can serve as XB acceptors to interact with noncovalent halogen ligands. Finally, through energy calculations, natural bond orbital analysis, and noncovalent interaction analysis, XBs are confirmed in 13 systems, among which two systems (445D and 4Q9Q) have relatively strong XBs. In addition, on the basis of energy scanning of four model systems, we explore the geometric rule for XB formation in NAs. This work will inspire researchers to utilize XBs in rational drug design targeting NAs.
Collapse
Affiliation(s)
- Kaijie Mu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zhengdan Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Amina Abula
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Cheng Peng
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| |
Collapse
|
4
|
Lever J, Brkljača R, Rix C, Urban S. Application of Networking Approaches to Assess the Chemical Diversity, Biogeography, and Pharmaceutical Potential of Verongiida Natural Products. Mar Drugs 2021; 19:582. [PMID: 34677481 PMCID: PMC8539549 DOI: 10.3390/md19100582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
This study provides a review of all isolated natural products (NPs) reported for sponges within the order Verongiida (1960 to May 2020) and includes a comprehensive compilation of their geographic and physico-chemical parameters. Physico-chemical parameters were used in this study to infer pharmacokinetic properties as well as the potential pharmaceutical potential of NPs from this order of marine sponge. In addition, a network analysis for the NPs produced by the Verongiida sponges was applied to systematically explore the chemical space relationships between taxonomy, secondary metabolite and drug score variables, allowing for the identification of differences and correlations within a dataset. The use of scaffold networks as well as bipartite relationship networks provided a platform to explore chemical diversity as well as the use of chemical similarity networks to link pharmacokinetic properties with structural similarity. This study paves the way for future applications of network analysis procedures in the field of natural products for any order or family.
Collapse
Affiliation(s)
- James Lever
- School of Science (Applied Chemistry and Environmental Sciences), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (J.L.); (C.R.)
| | - Robert Brkljača
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia;
| | - Colin Rix
- School of Science (Applied Chemistry and Environmental Sciences), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (J.L.); (C.R.)
| | - Sylvia Urban
- School of Science (Applied Chemistry and Environmental Sciences), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (J.L.); (C.R.)
| |
Collapse
|