1
|
Yu J, Wang J, Zhao H, Gao J, Kang Y, Cao D, Wang Z, Hou T. Organic Compound Synthetic Accessibility Prediction Based on the Graph Attention Mechanism. J Chem Inf Model 2022; 62:2973-2986. [PMID: 35675668 DOI: 10.1021/acs.jcim.2c00038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurate estimation of the synthetic accessibility of small molecules is needed in many phases of drug discovery. Several expert-crafted scoring methods and descriptor-based quantitative structure-activity relationship (QSAR) models have been developed for synthetic accessibility assessment, but their practical applications in drug discovery are still quite limited because of relatively low prediction accuracy and poor model interpretability. In this study, we proposed a data-driven interpretable prediction framework called GASA (Graph Attention-based assessment of Synthetic Accessibility) to evaluate the synthetic accessibility of small molecules by distinguishing compounds to be easy- (ES) or hard-to-synthesize (HS). GASA is a graph neural network (GNN) architecture that makes self-feature deduction by applying an attention mechanism to automatically capture the most important structural features related to synthetic accessibility. The sampling around the hypothetical classification boundary was used to improve the ability of GASA to distinguish structurally similar molecules. GASA was extensively evaluated and compared with two descriptor-based machine learning methods (random forest, RF; eXtreme gradient boosting, XGBoost) and four existing scores (SYBA: SYnthetic Bayesian Accessibility; SCScore: Synthetic Complexity score; RAscore: Retrosynthetic Accessibility score; SAscore: Synthetic Accessibility score). Our analysis demonstrates that GASA achieved remarkable performance in distinguishing similar molecules compared with other methods and had a broader applicability domain. In addition, we show how GASA learns the important features that affect molecular synthetic accessibility by assigning attention weights to different atoms. An online prediction service for GASA was offered at http://cadd.zju.edu.cn/gasa/.
Collapse
Affiliation(s)
- Jiahui Yu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Jike Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.,School of Computer Science, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Hong Zhao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Junbo Gao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410004, Hunan, P. R. China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.,State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China.,State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| |
Collapse
|
2
|
Medina-Franco JL, Sánchez-Cruz N, López-López E, Díaz-Eufracio BI. Progress on open chemoinformatic tools for expanding and exploring the chemical space. J Comput Aided Mol Des 2021; 36:341-354. [PMID: 34143323 PMCID: PMC8211976 DOI: 10.1007/s10822-021-00399-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023]
Abstract
The concept of chemical space is a cornerstone in chemoinformatics, and it has broad conceptual and practical applicability in many areas of chemistry, including drug design and discovery. One of the most considerable impacts is in the study of structure-property relationships where the property can be a biological activity or any other characteristic of interest to a particular chemistry discipline. The chemical space is highly dependent on the molecular representation that is also a cornerstone concept in computational chemistry. Herein, we discuss the recent progress on chemoinformatic tools developed to expand and characterize the chemical space of compound data sets using different types of molecular representations, generate visual representations of such spaces, and explore structure-property relationships in the context of chemical spaces. We emphasize the development of methods and freely available tools focusing on drug discovery applications. We also comment on the general advantages and shortcomings of using freely available and easy-to-use tools and discuss the value of using such open resources for research, education, and scientific dissemination.
Collapse
Affiliation(s)
- José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| | - Norberto Sánchez-Cruz
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.,Departamento de Química y Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, 07000, Mexico City, Mexico
| | - Bárbara I Díaz-Eufracio
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| |
Collapse
|