1
|
Bodosa J, Klauda JB. Metadynamics Study of Lipid-Mediated Antibacterial Toxin Binding to the EmrE Multiefflux Protein. J Phys Chem B 2024; 128:8712-8723. [PMID: 39197021 DOI: 10.1021/acs.jpcb.4c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
EmrE is a bacterial efflux protein in the small multidrug-resistant (SMR) family present in Escherichia coli. Due to its small size, 110 residues in each dimer subunit, it is an ideal model system to study ligand-protein-membrane interactions. Here in our work, we have calculated the free energy landscape of benzyltrimetylammonium (BTMA) and tetraphenyl phosphonium (TPP) binding to EmrE using the enhanced sampling method-multiple walker metadynamics. We estimate that the free energy of BTMA binding to EmrE is -21.2 ± 3.3 kJ/mol and for TPP is -43.6 ± 3.8 kJ/mol. BTMA passes through two metastable states to reach the binding pocket, while TPP has a more complex binding landscape with four metastable states and one main binding site. Our simulations show that the ligands interact with the membrane lipids at a distance 1 nm away from the binding site which forms a broad local minimum, consistent for both BTMA and TPP. This site can be an alternate entry point for ligands to partition from the membrane into the protein, especially for bulky and/or branched ligands. We also observed the membrane lipid and C-terminal 110HisA form salt-bridge interactions with the helix-1 residue 22LysB. Our free energy estimates and clusters are in close agreement with experimental data and give us an atomistic view of the ligand-protein-lipid interactions. Understanding the binding pathway of these ligands can guide us in future design of ligands that can alter or halt the function of EmrE.
Collapse
Affiliation(s)
- Jessica Bodosa
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Jeffery B Klauda
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Huang Y, Xu Y, Huang Z, Mao J, Hui Y, Rui M, Jiang X, Wu J, Ding Z, Feng Y, Gu Y, Chen L. Melatonin and calcium phosphate crystal-loaded poly(L-lactic acid) porous microspheres reprogram macrophages to improve bone repair. J Mater Chem B 2024. [PMID: 38940905 DOI: 10.1039/d3tb02965d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The bone immune microenvironment can influence the occurrence and progression of bone defects. To date, research on promoting macrophage M2 polarization to improve bone injury repair has been insufficient. In this study, we designed an injectable poly(L-lactic acid) (PLLA) porous microsphere that forms calcium phosphate crystals on its surface by binding to melatonin, followed by bionanomimetic mineralization in vitro. The microsphere is injectable and degradable, and its release of melatonin (MT) and calcium phosphate (CaP) crystals promotes macrophage M2 polarization, reprogramming of macrophages, and enhanced osteogenesis. After LPS stimulation, the proportion of M2-polarized macrophages in the MS@CaP@MT group was 39.2 ± 2.7%, significantly higher than that in other groups (P < 0.05). Further, in the MS@CaP@MT group, rats exhibited bone mineral densities of 129.4 ± 12.8 mg cc-1 at 2 weeks and 171.6 ± 13.6 mg cc-1 at 4 weeks in the defect area, which were significantly higher than those in other groups (P < 0.05). Using an animal model of femoral condylar defects, we demonstrated that MT PLLA porous microspheres loaded with calcium phosphate crystals can improve the immune microenvironment and form a microsphere-centered osteogenesis model. This significantly accelerates bone defect repair and provides a potential strategy for bone defect treatment.
Collapse
Affiliation(s)
- Yiyang Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| | - Yichang Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| | - Ziyan Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| | - Jiannan Mao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
- Department of Orthopaedics, Jiangyin Clinical College, Xuzhou Medical University, No. 163 Shoushan Road, Jiang Yin 214400, China
| | - Yujian Hui
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
- Department of Orthopaedics, Jiangyin Clinical College, Xuzhou Medical University, No. 163 Shoushan Road, Jiang Yin 214400, China
| | - Min Rui
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
- Department of Orthopaedics, Jiangyin Clinical College, Xuzhou Medical University, No. 163 Shoushan Road, Jiang Yin 214400, China
| | - Xinzhao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| | - Jie Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| | - Zhouye Ding
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| | - Yu Feng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| | - Yong Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| | - Liang Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 188 Shizi Road, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
3
|
Okamoto HH, Cecon E, Nureki O, Rivara S, Jockers R. Melatonin receptor structure and signaling. J Pineal Res 2024; 76:e12952. [PMID: 38587234 DOI: 10.1111/jpi.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/05/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Melatonin (5-methoxy-N-acetyltryptamine) binds with high affinity and specificity to membrane receptors. Several receptor subtypes exist in different species, of which the mammalian MT1 and MT2 receptors are the best-characterized. They are members of the G protein-coupled receptor superfamily, preferentially coupling to Gi/o proteins but also to other G proteins in a cell-context-depending manner. In this review, experts on melatonin receptors will summarize the current state of the field. We briefly report on the discovery and classification of melatonin receptors, then focus on the molecular structure of human MT1 and MT2 receptors and highlight the importance of molecular simulations to identify new ligands and to understand the structural dynamics of these receptors. We then describe the state-of-the-art of the intracellular signaling pathways activated by melatonin receptors and their complexes. Brief statements on the molecular toolbox available for melatonin receptor studies and future perspectives will round-up this review.
Collapse
Affiliation(s)
- Hiroyuki H Okamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Erika Cecon
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
4
|
Bedini A, Elisi GM, Fanini F, Retini M, Scalvini L, Pasquini S, Contri C, Varani K, Spadoni G, Mor M, Vincenzi F, Rivara S. Binding and unbinding of potent melatonin receptor ligands: Mechanistic simulations and experimental evidence. J Pineal Res 2024; 76:e12941. [PMID: 38606814 DOI: 10.1111/jpi.12941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 04/13/2024]
Abstract
The labeled ligand commonly employed in competition binding studies for melatonin receptor ligands, 2-[125I]iodomelatonin, showed slow dissociation with different half-lives at the two receptor subtypes. This may affect the operational measures of affinity constants, which at short incubation times could not be obtained in equilibrium conditions, and structure-activity relationships, as the Ki values of tested ligands could depend on either interaction at the binding site or the dissociation path. To address these issues, the kinetic and saturation binding parameters of 2-[125I]iodomelatonin as well as the competition constants for a series of representative ligands were measured at a short (2 h) and a long (20 h) incubation time. Concurrently, we simulated by molecular modeling the dissociation path of 2-iodomelatonin from MT1 and MT2 receptors and investigated the role of interactions at the binding site on the stereoselectivity observed for the enantiomers of the subtype-selective ligand UCM1014. We found that equilibrium conditions for 2-[125I]iodomelatonin binding can be reached only with long incubation times, particularly for the MT2 receptor subtype, for which a time of 20 h approximates this condition. On the other hand, measured Ki values for a set of ligands including agonists, antagonists, nonselective, and subtype-selective compounds were not significantly affected by the length of incubation, suggesting that structure-activity relationships based on data collected at shorter time reflect different interactions at the binding site. Molecular modeling simulations evidenced that the slower dissociation of 2-iodomelatonin from the MT2 receptor can be related to the restricted mobility of a gatekeeper tyrosine along a lipophilic path from the binding site to the membrane bilayer. The enantiomers of the potent, MT2-selective agonist UCM1014 were separately synthesized and tested. Molecular dynamics simulations of the receptor-ligand complexes provided an explanation for their stereoselectivity as due to the preference shown by the eutomer at the binding site for the most abundant axial conformation adopted by the ligand in solution. These results suggest that, despite the slow-binding kinetics occurring for the labeled ligand, affinity measures at shorter incubation times give robust results consistent with known structure-activity relationships and with interactions taken at the receptor binding site.
Collapse
Affiliation(s)
- Annalida Bedini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | - Gian Marco Elisi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Fabiola Fanini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | - Michele Retini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Silvia Pasquini
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Università degli Studi di Ferrara, Ferrara, Italy
| | - Chiara Contri
- Dipartimento di Medicina Traslazionale, Università degli Studi di Ferrara, Ferrara, Italy
| | - Katia Varani
- Dipartimento di Medicina Traslazionale, Università degli Studi di Ferrara, Ferrara, Italy
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Fabrizio Vincenzi
- Dipartimento di Medicina Traslazionale, Università degli Studi di Ferrara, Ferrara, Italy
| | - Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
5
|
Feng Y, Jiang X, Liu W, Lu H. The location, physiology, pathology of hippocampus Melatonin MT 2 receptor and MT 2-selective modulators. Eur J Med Chem 2023; 262:115888. [PMID: 37866336 DOI: 10.1016/j.ejmech.2023.115888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Melatonin, a neurohormone secreted by the pineal gland and regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus, is synthesized and directly released into the cerebrospinal fluid (CSF) of the third ventricle (3rdv), where it undergoes rapid absorption by surrounding tissues to exert its physiological function. The hippocampus, a vital structure in the limbic system adjacent to the ventricles, plays a pivotal role in emotional response and memory formation. Melatonin MT1 and MT2 receptors are G protein-coupled receptors (GPCRs) that primarily mediate melatonin's receptor-dependent effects. In comparison to the MT1 receptor, the widely expressed MT2 receptor is crucial for mediating melatonin's biological functions within the hippocampus. Specifically, MT2 receptor is implicated in hippocampal synaptic plasticity and memory processes, as well as neurogenesis and axogenesis. Numerous studies have demonstrated the involvement of MT2 receptors in the pathophysiology and pharmacology of Alzheimer's disease, depression, and epilepsy. This review focuses on the anatomical localization of MT2 receptor in the hippocampus, their physiological function in this region, and their signal transduction and pharmacological roles in neurological disorders. Additionally, we conducted a comprehensive review of MT2 receptor ligands used in psychopharmacology and other MT2-selective ligands over recent years. Ultimately, we provide an outlook on future research for selective MT2 receptor drug candidates.
Collapse
Affiliation(s)
- Yueqin Feng
- Department of Ultrasound, the First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, PR China
| | - Hongyuan Lu
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China.
| |
Collapse
|
6
|
Galvani F, Pala D, Cuzzolin A, Scalvini L, Lodola A, Mor M, Rizzi A. Unbinding Kinetics of Muscarinic M3 Receptor Antagonists Explained by Metadynamics Simulations. J Chem Inf Model 2023; 63:2842-2856. [PMID: 37053454 PMCID: PMC10170513 DOI: 10.1021/acs.jcim.3c00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 04/15/2023]
Abstract
The residence time (RT), the time for which a drug remains bound to its biological target, is a critical parameter for drug design. The prediction of this key kinetic property has been proven to be challenging and computationally demanding in the framework of atomistic simulations. In the present work, we setup and applied two distinct metadynamics protocols to estimate the RTs of muscarinic M3 receptor antagonists. In the first method, derived from the conformational flooding approach, the kinetics of unbinding is retrieved from a physics-based parameter known as the acceleration factor α (i.e., the running average over time of the potential deposited in the bound state). Such an approach is expected to recover the absolute RT value for a compound of interest. In the second method, known as the tMETA-D approach, a qualitative estimation of the RT is given by the time of simulation required to drive the ligand from the binding site to the solvent bulk. This approach has been developed to reproduce the change of experimental RTs for compounds targeting the same target. Our analysis shows that both computational protocols are able to rank compounds in agreement with their experimental RTs. Quantitative structure-kinetics relationship (SKR) models can be identified and employed to predict the impact of a chemical modification on the experimental RT once a calibration study has been performed.
Collapse
Affiliation(s)
- Francesca Galvani
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Daniele Pala
- Chemistry
Research and Drug Design Department, Chiesi
Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Alberto Cuzzolin
- Chemistry
Research and Drug Design Department, Chiesi
Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Laura Scalvini
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Marco Mor
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
- Microbiome
Research Hub, University of Parma, Parco Area delle Scienze 11/A, I-43124 Parma, Italy
| | - Andrea Rizzi
- Chemistry
Research and Drug Design Department, Chiesi
Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| |
Collapse
|
7
|
Arafet K, Scalvini L, Galvani F, Martí S, Moliner V, Mor M, Lodola A. Mechanistic Modeling of Lys745 Sulfonylation in EGFR C797S Reveals Chemical Determinants for Inhibitor Activity and Discriminates Reversible from Irreversible Agents. J Chem Inf Model 2023; 63:1301-1312. [PMID: 36762429 PMCID: PMC9976278 DOI: 10.1021/acs.jcim.2c01586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Targeted covalent inhibitors hold promise for drug discovery, particularly for kinases. Targeting the catalytic lysine of epidermal growth factor receptor (EGFR) has attracted attention as a new strategy to overcome resistance due to the emergence of C797S mutation. Sulfonyl fluoride derivatives able to inhibit EGFRL858R/T790M/C797S by sulfonylation of Lys745 have been reported. However, atomistic details of this process are still poorly understood. Here, we describe the mechanism of inhibition of an innovative class of compounds that covalently engage the catalytic lysine of EGFR, through a sulfur(VI) fluoride exchange (SuFEx) process, with the help of hybrid quantum mechanics/molecular mechanics (QM/MM) and path collective variables (PCVs) approaches. Our simulations identify the chemical determinants accounting for the irreversible activity of agents targeting Lys745 and provide hints for the further optimization of sulfonyl fluoride agents.
Collapse
Affiliation(s)
- Kemel Arafet
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy,BioComp
Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló, Spain
| | - Laura Scalvini
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Francesca Galvani
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Sergio Martí
- BioComp
Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló, Spain
| | - Vicent Moliner
- BioComp
Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló, Spain
| | - Marco Mor
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy,Microbiome
Research Hub, University of Parma, Parco Area delle Scienze 11/A, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy,. Phone: +39 0521 905062. Fax: +39 0521 905006
| |
Collapse
|
8
|
Tian H, Gunnison KM, Kazmi MA, Sakmar TP, Huber T. FRET sensors reveal the retinal entry pathway in the G protein-coupled receptor rhodopsin. iScience 2022; 25:104060. [PMID: 35355518 PMCID: PMC8958324 DOI: 10.1016/j.isci.2022.104060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/11/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022] Open
|
9
|
Elisi GM, Scalvini L, Lodola A, Bedini A, Spadoni G, Rivara S. In silico drug discovery of melatonin receptor ligands with therapeutic potential. Expert Opin Drug Discov 2022; 17:343-354. [PMID: 35255751 DOI: 10.1080/17460441.2022.2043846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The neurohormone melatonin (N-acetyl-5-methoxytryptamine) regulates circadian rhythms exerting a variety of effects in the central nervous system and in periphery. These activities are mainly mediated by activation of MT1 and MT2 GPCRs. MT1/MT2 agonist compounds are used clinically for insomnia, depression, and circadian rhythm disturbances. AREA COVERED The following review describes the design strategies that have led to the identification of melatonin receptor ligands, guided by in silico approaches and molecular modeling. Initial ligand-based design, mainly relying on pharmacophore modeling and 3D-QSAR, has been flanked by structure-based virtual screening, given the recent availability of MT1 and MT2 crystal structures. Receptor ligands with different activity profiles, agonist/antagonist and subtype-selective compounds, are available. EXPERT OPINION An insight on the pharmacological characterization and therapeutic perspectives for relevant ligands is provided. In silico drug discovery has been instrumental in the design of novel ligands targeting melatonin receptors. Ligand-based approaches has led to the construction of a solid framework defining structure-activity relationships to obtain compounds with a tailored pharmacological profile. Structure-based techniques could integrate previous knowledge and provide compounds with novel chemotypes and pharmacological activity as drug candidates for disease conditions in which melatonin receptor ligands are currently being investigated, including cancer and pain.
Collapse
Affiliation(s)
- Gian Marco Elisi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Annalida Bedini
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|