1
|
Zeng H, Zhang Z, Zhou D, Wang R, Verkhratsky A, Nie H. Investigation of the anti-inflammatory, anti-pruritic, and analgesic effects of sophocarpine inhibiting TRP channels in a mouse model of inflammatory itch and pain. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118882. [PMID: 39366497 DOI: 10.1016/j.jep.2024.118882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophocarpine is a bioactive compound extracted from the dried root of Sophorae Flavesentis Aiton, a plant that has been used for thousands of years for various conditions including skin itch and pain. Its antipruritic and analgesic effects are suggested in publications, while the molecular mechanisms underneath interacting with TRP channels are not understood. AIM OF THE STUDY We investigated the anti-inflammatory, antipruritic, and analgesic effects of sophocarpine in a murine inflammatory itch and pain model to elucidate the underlying mechanisms. MATERIALS AND METHODS We evaluated sophocarpine's anti-pruritic and analgesic effects by monitoring mice's scratching and wiping behaviors, and the anti-inflammatory effect by measuring psoriasis area and severity index (PASI) score. The mRNA and protein expression of TRPA1/TRPV1 was analyzed by real-time quantitative polymerase chain reaction and western blotting. We further investigated the relationship between sophocarpine and TRPA1/TRPV1 in mice administered allyl-isothiocyanate (AITC) or capsaicin and by molecular docking. RESULTS We found that sophocarpine decreased scratching bouts, wipes, and the PASI score, reduced the TNF-α and IL-1β in the skin and TRPA1 and TRPV1 in the trigeminal ganglion. Pretreatment of sophocarpine decreased AITC-induced scratching bouts and wipes and capsaicin-induced wipes. We also found potential competitive bindings between sophocarpine and AITC/capsaicin to TRPA1/TRPV1. CONCLUSIONS Sophocarpine is a potential competitive inhibitor of TRPA1 and TRPV1 channels eliciting strong anti-inflammatory, anti-pruritic, and analgesic effects, suggesting its significant therapeutic potential in treating diseases with inflammatory itch and pain.
Collapse
Affiliation(s)
- Hekun Zeng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Zhe Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dan Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Ranjing Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Hong Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
2
|
Costa F, Giorgini G, Minnelli C, Mobbili G, Guardiani C, Giacomello A, Galeazzi R. Membrane Composition Allows the Optimization of Berberine Encapsulation in Liposomes. Mol Pharm 2024; 21:5818-5826. [PMID: 39425686 DOI: 10.1021/acs.molpharmaceut.4c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Berberine (BBR) is a natural molecule with noteworthy pharmacological properties, including the prevention of antibiotic resistance in Gram-negative bacteria. However, its oral bioavailability is poor, thus resulting in an impaired absorption and efficacy in humans. In combination with other drugs, liposomes have been shown to enhance the availability of the drug, representing a smart delivery system to target tissues and reduce negative side effects. To date, there is a lack of studies on BBR and liposomes that enable the rationalization and molecular-based design of such formulations for future use in humans. In this work, the encapsulation of BBR into liposomes is proposed to overcome current limitations using a combination of experimental and computational assays to rationalize the membrane composition of liposomes that maximizes BBR encapsulation. First, the encapsulation efficiency was measured for several membrane compositions, revealing that it is enhanced by cholesteryl hemisuccinate and, to a lesser extent, by cholesterol. The physical basis of the BBR encapsulation efficiency and permeability was clarified using molecular dynamics simulation: using the lipid composition, one can tune the capability of membranes to attract, i.e., to adsorb, the molecules onto their surface. Overall, these findings suggest a rational strategy to maximize the encapsulation efficiency of liposomes by using negatively charged lipids, thus representing the basis for designing delivery systems for BBR, useful to treat, e.g., antibiotic resistance.
Collapse
Affiliation(s)
- Flavio Costa
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Rome, Italy
| | - Giorgia Giorgini
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giovanna Mobbili
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Carlo Guardiani
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Rome, Italy
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Rome, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
3
|
Fan X, Ye Y, Saha A, Peng L, Pindi C, Wang Q, Yang L, Liu J, Tang X, Palermo G, Liao J, Xu T, Lu Y, Du G. Fine-tuning pH sensor H98 by remote essential residues in the hydrogen-bond network of mTASK-3. Int J Biol Macromol 2024; 273:132892. [PMID: 38878921 PMCID: PMC11583903 DOI: 10.1016/j.ijbiomac.2024.132892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/23/2024]
Abstract
TASK-3 generates a background K+ conductance which when inhibited by acidification depolarizes membrane potential and increases cell excitability. These channels sense pH by protonation of histidine residue H98, but recent evidence revealed that several other amino acid residues also contribute to TASK-3 pH sensitivity, suggesting that the pH sensitivity is determined by an intermolecular network. Here we use electrophysiology and molecular modeling to characterize the nature and requisite role(s) of multiple amino acids in pH sensing by TASK-3. Our results suggest that the pH sensor H98 and consequently pH sensitivity is influenced by remote amino acids that function as a hydrogen-bonding network to modulate ionic conductivity. Among the residues in the network, E30 and K79 are the most important for passing external signals near residue S31 to H98. The hydrogen-bond network plays a key role in selectivity or pH sensing in mTASK-3, and E30 and S31 in the network can modulate the conductive properties (E30) or reverse the pH sensitivity and selectivity of the channel (S31). Molecular dynamics simulations and pK1/2 calculation revealed that double mutants involving H98 + S31 primarily regulate the structure stability of the pore selectivity filter and pore loop regions, further strengthen the stability of the cradle suspension system, and alter the ionization state of E30 and K79, thereby preventing pore conformational change that normally occurs in response to varying extracellular pH. These results demonstrate that crucial residues in the hydrogen-bond network can remotely tune the pH sensing of mTASK-3 and may be a potential allosteric regulatory site for therapeutic molecule development.
Collapse
Affiliation(s)
- Xueming Fan
- Department of Pain Management, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Yifei Ye
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Aakash Saha
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Li Peng
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Chinmai Pindi
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Qi Wang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Linghui Yang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiangdong Tang
- Sleep Medicine Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Jiayu Liao
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 92521, United States; Huaxi-Cal Research Center for Predictive Intervention Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China
| | - Tingting Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guizhou, Guangdong 510530, China
| | - Yongzhi Lu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, China.
| | - Guizhi Du
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610000, China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Wang Z, Chen H, Liang T, Hu Y, Xue Y, Wu Y, Zeng Q, Zheng Y, Guo Y, Zheng Z, Zhai D, Liang P, Shen C, Jiang C, Liu L, Shen Q, Zhu H, Liu Q. The implications of lipid mobility, drug-enhancers (surfactants)-skin interaction, and TRPV1 activation on licorice flavonoid permeability. Drug Deliv Transl Res 2024; 14:1582-1600. [PMID: 37980702 DOI: 10.1007/s13346-023-01473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Licorice flavonoids (LFs) are derived from perennial herb licorice and have been attaining a considerable interest in cosmetic and skin ailment treatments. However, some LFs compounds exhibited poor permeation and retention capability, which restricted their application. In this paper, we systematically investigated and compared the enhancement efficacy and mechanisms of different penetration enhancers (surfactants) with distinct lipophilicity or "heat and cool" characteristics on ten LFs compounds. Herein, the aim was to unveil how seven different enhancers modified the stratum corneum (SC) surface and influence the drug-enhancers-skin interaction, and to relate these effects to permeation enhancing effects of ten LFs compounds. The enhancing efficacy was evaluated by enhancement ratio (ER)permeation, ERretention, and ERcom, which was conducted on the porcine skin. It was summarized that heat capsaicin (CaP) and lipophilic Plurol® Oleique CC 497 (POCC) caused the most significance of SC lipid fluidity, SC water loss, and surface structure alterations, thereby resulting in a higher permeation enhancing effects than other enhancers. CaP could completely occupied drug-skin interaction sites in the SC, while POCC only occupied most drug-skin interactions. Moreover, the enhancing efficacy of both POCC and CaP was dependent on the log P values of LFs. For impervious LFs with low drug solubility, enhancing their drug solubility could help them permeate into the SC. For high-permeation LFs, their permeation was inhibited ascribed to the strong drug-enhancer-skin strength in the SC. More importantly, drug-surfactant-skin energy possessed a good negative correlation with the LFs permeation amount for most LFs molecules. Additionally, the activation of transient receptor potential vanilloid 1 (TRPV1) could enhance LFs permeation by CaP. The study provided novel insights for drug permeation enhancement from the viewpoint of molecular pharmaceutics, as well as the scientific utilization of different enhancers in topical or transdermal formulations.
Collapse
Affiliation(s)
- Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Hongkai Chen
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Tao Liang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yixin Zheng
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yinglin Guo
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Zeying Zheng
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Dan Zhai
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Peiyi Liang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Qun Shen
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Hongxia Zhu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, 1838, North Guangzhou Avenue, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Ren H, Zhou J, Fu H, Feng Q, Wang J, Li C, Xia G, Shang W, He Y. Identification and virtual screening of novel salty peptides from hydrolysate of tilapia by-product by batch molecular docking. Front Nutr 2024; 10:1343209. [PMID: 38260067 PMCID: PMC10800615 DOI: 10.3389/fnut.2023.1343209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Tilapia produces a large number of by-products during processing, which contain potentially flavorful peptides. Methods The application of PyRx software enabled batch molecular docking andscreening of 16 potential salty peptides from 189 peptides identified in the enzymaticdigestion of tilapia by-products. Results According to sensory analysis, all 16 peptides werepredominantly salty with a threshold of 0.256 - 0.379 mmol/L with some sournessand astringency, among which HLDDALR had the highest salty intensity, followedby VIEPLDIGDDKVR, FPGIPDHL, and DFKSPDDPSRH. I addition, moleculardocking results showed these four core peptides with high salt intensity bound to thesalt receptor TRPV1 mainly via van der Waals interactions, hydrogen bonds, andhydrophobic forces; Arg491, Tyr487, VAL441, and Asp708 were the key sites for thebinding of salty peptides to TRPV1. Therefore, the application of batch moleculardocking using PyRx is effective and economical for the virtual screening of saltypeptides.
Collapse
Affiliation(s)
- Hongjun Ren
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Jingxuan Zhou
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Huixian Fu
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Qiaohui Feng
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Jionghao Wang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, Haikou, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, China
- Key Laboratory of Seafood Processing of Haikou, Haikou, China
| | - Guanghua Xia
- College of Food Science and Engineering, Hainan University, Haikou, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, China
- Key Laboratory of Seafood Processing of Haikou, Haikou, China
| | - Wenting Shang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Yanfu He
- College of Food Science and Engineering, Hainan University, Haikou, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, China
- Key Laboratory of Seafood Processing of Haikou, Haikou, China
| |
Collapse
|
6
|
Zhu K, Wang L, Liao T, Li W, Zhou J, You Y, Shi J. Progress in the development of TRPV1 small-molecule antagonists: Novel Strategies for pain management. Eur J Med Chem 2023; 261:115806. [PMID: 37713804 DOI: 10.1016/j.ejmech.2023.115806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) channels are widely distributed in sensory nerve endings, the central nervous system, and other tissues, functioning as ion channel proteins responsive to thermal pain and chemical stimuli. In recent years, the TRPV1 receptor has garnered significant interest as a potential therapeutic approach for various pain-related disorders, particularly TRPV1 antagonists. The present review offers a comprehensive, systematic exploration of both first- and second-generation TRPV1 antagonists in the context of pain management. Antagonists are categorized and explicated according to their structural characteristics. Detailed examination of binding modes, structural features, and pharmacological activities, alongside a critical appraisal of the advantages and limitations inherent to typical compounds within each structural category, are undertaken. Detailed discussions of the binding modes, structural features, pharmacological activities, advantages, and limitations of typical compounds within each structural category offer valuable insights and guidance for the future research and development of safer, more effective, and more targeted TRPV1 antagonists.
Collapse
Affiliation(s)
- Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lin Wang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - TingTing Liao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jing Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yaodong You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
7
|
Dewaker V, Sharma AR, Debnath U, Park ST, Kim HS. Insights from molecular dynamics simulations of TRPV1 channel modulators in pain. Drug Discov Today 2023; 28:103798. [PMID: 37838068 DOI: 10.1016/j.drudis.2023.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
TRPV1 is a nonselective cation channel vital for detecting noxious stimuli (heat, acid, capsaicin). Its role in pain makes it a potential drug target for chronic pain management, migraines, and related disorders. This review updates molecular dynamics (MD) simulation studies on the TRPV1 channel, focusing on its gating mechanism, ligand-binding sites, and implications for drug design. The article also explores challenges in developing modulators, SAR optimization, and clinical trial studies. Efforts have been undertaken to concisely present MD simulation findings, with a focus on their relevance to drug discovery.
Collapse
Affiliation(s)
- Varun Dewaker
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Ashish R Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Utsab Debnath
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand 248007, India
| | - Sung Taek Park
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si 24252, Gangwon-do, Republic of Korea; Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea; EIONCELL Inc., Chuncheon 24252, Republic of Korea
| | - Hyeong Su Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si 24252, Gangwon-do, Republic of Korea; Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea; EIONCELL Inc., Chuncheon 24252, Republic of Korea.
| |
Collapse
|
8
|
Wang Y. Multidisciplinary Advances Address the Challenges in Developing Drugs against Transient Receptor Potential Channels to Treat Metabolic Disorders. ChemMedChem 2023; 18:e202200562. [PMID: 36530131 DOI: 10.1002/cmdc.202200562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels that regulate key physiological and pathological processes in response to a broad range of stimuli. Moreover, they systemically regulate the release of hormones, metabolic homeostasis, and complications of diabetes, which positions them as promising therapeutic targets to combat metabolic disorders. Nevertheless, there are significant challenges in the design of TRP ligands with high potency and durability. Herein we summarize the four challenges as hydrophobicity, selectivity, mono-target therapy, and interspecies discrepancy. We present 1134 TRP ligands with diversified modes of TRP-ligand interaction and provide a detailed discussion of the latest strategies, especially cryogenic electron microscopy (cryo-EM) and computational methods. We propose solutions to address the challenges with a critical analysis of advances in membrane partitioning, polypharmacology, biased agonism, and biochemical screening of transcriptional modulators. They are fueled by the breakthrough from cryo-EM, chemoinformatics and bioinformatics. The discussion is aimed to shed new light on designing next-generation drugs to treat obesity, diabetes and its complications, with optimal hydrophobicity, higher mode selectivity, multi-targeting and consistent activities between human and rodents.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, P. R. China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, 200438, P. R. China
| |
Collapse
|
9
|
Lim S, Seo SE, Jo S, Kim KH, Kim L, Kwon OS. Highly Efficient Real-Time TRPV1 Screening Methodology for Effective Drug Candidates. ACS OMEGA 2022; 7:36441-36447. [PMID: 36278091 PMCID: PMC9583638 DOI: 10.1021/acsomega.2c04202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/21/2022] [Indexed: 05/26/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) agonists that bind to the vanilloid pocket are being actively studied in the pharmaceutical industry to develop novel treatments for chronic pain and cancer. To discover synthetic vanilloids without the side effect of capsaicin, a time-consuming process of drug candidate selection is essential to a myriad of chemical compounds. Herein, we propose a novel approach to field-effect transistors for the fast and facile screening of lead vanilloid compounds for the development of TRPV1-targeting medications. The graphene field-effect transistor was fabricated with human TRPV1 receptor protein as the bioprobe, and various analyses (SEM, Raman, and FT-IR) were utilized to verify successful manufacture. Simulations of TRPV1 with capsaicin, olvanil, and arvanil were conducted using AutoDock Vina/PyMOL to confirm the binding affinity. The interaction of the ligands with TRPV1 was detected via the fabricated platform, and the collected responses corresponded to the simulation analysis.
Collapse
Affiliation(s)
- Seong
Gi Lim
- Infectious
Disease Research Center, Korea Research
Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sung Eun Seo
- Infectious
Disease Research Center, Korea Research
Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department
of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seongjae Jo
- Infectious
Disease Research Center, Korea Research
Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kyung Ho Kim
- Infectious
Disease Research Center, Korea Research
Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Lina Kim
- Infectious
Disease Research Center, Korea Research
Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Oh Seok Kwon
- Infectious
Disease Research Center, Korea Research
Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department
of Biotechnology, University of Science
& Technology (UST), Daejeon 34141, Republic of Korea
- College
of Biotechnology and Bioengineering, Sungkyunkwan
University, Suwon 16419, Republic of Korea
| |
Collapse
|