1
|
Ikizawa S, Hori T, Wijaya TN, Kono H, Bai Z, Kimizono T, Lu W, Tran DP, Kitao A. PaCS-Toolkit: Optimized Software Utilities for Parallel Cascade Selection Molecular Dynamics (PaCS-MD) Simulations and Subsequent Analyses. J Phys Chem B 2024; 128:3631-3642. [PMID: 38578072 PMCID: PMC11033871 DOI: 10.1021/acs.jpcb.4c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Parallel cascade selection molecular dynamics (PaCS-MD) is an enhanced conformational sampling method conducted as a "repetition of time leaps in parallel worlds", comprising cycles of multiple molecular dynamics (MD) simulations performed in parallel and selection of the initial structures of MDs for the next cycle. We developed PaCS-Toolkit, an optimized software utility enabling the use of different MD software and trajectory analysis tools to facilitate the execution of the PaCS-MD simulation and analyze the obtained trajectories, including the preparation for the subsequent construction of the Markov state model. PaCS-Toolkit is coded with Python, is compatible with various computing environments, and allows for easy customization by editing the configuration file and specifying the MD software and analysis tools to be used. We present the software design of PaCS-Toolkit and demonstrate applications of PaCS-MD variations: original targeted PaCS-MD to peptide folding; rmsdPaCS-MD to protein domain motion; and dissociation PaCS-MD to ligand dissociation from adenosine A2A receptor.
Collapse
Affiliation(s)
- Shinji Ikizawa
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Tatsuki Hori
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Tegar Nurwahyu Wijaya
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
- Department
of Chemistry, Universitas Pertamina, Jl. Teuku Nyak Arief, Simprug, Jakarta 12220, Indonesia
| | - Hiroshi Kono
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Zhen Bai
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Tatsuhiro Kimizono
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Wenbo Lu
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Duy Phuoc Tran
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Akio Kitao
- School
of Life Science and Technology, Tokyo Institute
of Technology, 2-12-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| |
Collapse
|
2
|
Wijaya T, Kitao A. Energetic and Kinetic Origins of CALB Interfacial Activation Revealed by PaCS-MD/MSM. J Phys Chem B 2023; 127:7431-7441. [PMID: 37562019 PMCID: PMC10476181 DOI: 10.1021/acs.jpcb.3c02041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/21/2023] [Indexed: 08/12/2023]
Abstract
The conformational dynamics of Candida antarctica lipase B (CALB) was investigated by molecular dynamics (MD) simulation, parallel cascade selection MD (PaCS-MD), and the Markov state model (MSM) and mainly focused on the lid-opening motion closely related to substrate binding. All-atom MD simulation of CALB was conducted in water and on the interface of water and tricaprylin. CALB initially situated in water and separated by layers of water from the interface is spontaneously adsorbed onto the tricaprylin surface during MD simulation. The opening and closing motions of the lid are simulated by PaCS-MD, and subsequent MSM analysis provided the free-energy landscape and time scale of the conformational transitions among the closed, semiopen, and open states. The closed state is the most stable in the water system, but the stable conformation in the interface system shifts to the semiopen state. These effects could explain the energetics and kinetics origin of the previously reported interfacial activation of CALB. These findings could help expand the application of CALB toward a wide variety of substrates.
Collapse
Affiliation(s)
- Tegar
N. Wijaya
- School
of Life Science and Technology, Tokyo Institute
of Technology. 2-12-1
Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Department
of Chemistry, Universitas Pertamina, Jl. Teuku Nyak Arief, Simprug, Jakarta 12220, Indonesia
| | - Akio Kitao
- School
of Life Science and Technology, Tokyo Institute
of Technology. 2-12-1
Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
3
|
He Y, Chen S, Xie G, Yi X, Wang J. Surface plasmon resonance detection of UV irradiation-induced DNA damage and photoenzymatic repair processes through specific interaction between consensus double-stranded DNA and p53 protein. Analyst 2023; 148:849-855. [PMID: 36648133 DOI: 10.1039/d2an01847k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA damage, such as DNA lesions and strand breaks, impairs normal cell functions and failure in the DNA repair process could lead to gene mutation, cell apoptosis and disease occurrence. p53 is a tumor suppressor and DNA-binding protein, and DNA damage might affect their interaction and the subsequent p53 function. Herein, real-time monitoring of DNA damage and repair processes through DNA-p53 protein interaction was performed by surface plasmon resonance (SPR). The target DNA with consecutive pyrimidine nucleobases was first damaged upon UVC (254 nm) irradiation and then photoenzymatically repaired under UVA (365 nm) irradiation. The as-formed double-stranded (ds) DNA between probe DNA and normal, damaged or repaired target DNA was immobilized on the sensor chips, followed by the injection of p53 protein. By measuring the SPR signals under different cases, the DNA damage and repair processes could be conveniently monitored. The SPR signals were inversely proportional to the UVC doses ranging from 0.021 to 1.26 kJ m-2, providing a viable means for the quantification of the DNA damage level. The binding affinity between p53 and the dsDNA formed upon the hybridization of probe DNA and normal, damaged, or photoenzymatically repaired target DNA was estimated. This is the first report on measuring the equilibrium dissociation constant (KD) between the p53 protein and the dsDNA with photodamaged or repaired target sequences. The sensing strategy by SPR thus opens a new avenue for real-time measurement of the DNA damage and the repair processes.
Collapse
Affiliation(s)
- Yuhan He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Sijia Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Guoyang Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Xinyao Yi
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| |
Collapse
|
4
|
Chang Y, Hawkins BA, Du JJ, Groundwater PW, Hibbs DE, Lai F. A Guide to In Silico Drug Design. Pharmaceutics 2022; 15:pharmaceutics15010049. [PMID: 36678678 PMCID: PMC9867171 DOI: 10.3390/pharmaceutics15010049] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
The drug discovery process is a rocky path that is full of challenges, with the result that very few candidates progress from hit compound to a commercially available product, often due to factors, such as poor binding affinity, off-target effects, or physicochemical properties, such as solubility or stability. This process is further complicated by high research and development costs and time requirements. It is thus important to optimise every step of the process in order to maximise the chances of success. As a result of the recent advancements in computer power and technology, computer-aided drug design (CADD) has become an integral part of modern drug discovery to guide and accelerate the process. In this review, we present an overview of the important CADD methods and applications, such as in silico structure prediction, refinement, modelling and target validation, that are commonly used in this area.
Collapse
Affiliation(s)
- Yiqun Chang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Bryson A. Hawkins
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jonathan J. Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W. Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - David E. Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Felcia Lai
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence:
| |
Collapse
|