1
|
Hu X, Jiang Y, Deng L. Exploring ncRNA-Drug Sensitivity Associations via Graph Contrastive Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1380-1389. [PMID: 38578855 DOI: 10.1109/tcbb.2024.3385423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Increasing evidence has shown that noncoding RNAs (ncRNAs) can affect drug efficiency by modulating drug sensitivity genes. Exploring the association between ncRNAs and drug sensitivity is essential for drug discovery and disease prevention. However, traditional biological experiments for identifying ncRNA-drug sensitivity associations are time-consuming and laborious. In this study, we develop a novel graph contrastive learning approach named NDSGCL to predict ncRNA-drug sensitivity. NDSGCL uses graph convolutional networks to learn feature representations of ncRNAs and drugs in ncRNA-drug bipartite graphs. It integrates local structural neighbours and global semantic neighbours to learn a more comprehensive representation by contrastive learning. Specifically, the local structural neighbours aim to capture the higher-order relationship in the ncRNA-drug graph, while the global semantic neighbours are defined based on semantic clusters of the graph that can alleviate the impact of data sparsity. The experimental results show that NDSGCL outperforms basic graph convolutional network methods, existing contrastive learning methods, and state-of-the-art prediction methods. Visualization experiments show that the contrastive objectives of local structural neighbours and global semantic neighbours play a significant role in contrastive learning. Case studies on two drugs show that NDSGCL is an effective tool for predicting ncRNA-drug sensitivity associations.
Collapse
|
2
|
Zhang Y, Li X. Empowering Graph Neural Networks with Block-Based Dual Adaptive Deep Adjustment for Drug Resistance-Related NcRNA Discovery. J Chem Inf Model 2024; 64:3537-3547. [PMID: 38523272 DOI: 10.1021/acs.jcim.3c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Drug resistance to chemotherapeutic agents remains a formidable challenge in cancer treatment, significantly impacting treatment efficacy. Extensive research has exposed the intimate involvement of noncoding RNAs (ncRNAs) in conferring resistance to cancer drugs. Understanding the intricate associations between ncRNAs and drug resistance is of pivotal importance in advancing clinical interventions and expediting drug development. However, traditional biological experimental methods are hampered by limitations, such as labor intensiveness, time consumption, and constraints in scalability. Addressing these challenges necessitates the development of efficient computational methods for the accurate prediction of potential ncRNA-drug resistance associations (NDRA). However, most existing predictive models primarily focus on known ncRNA-drug resistance associations, often neglecting the critical aspect of similarity information between ncRNAs and drug resistance. This oversight may hinder the accuracy of characterizing these associations. To overcome the limitations of existing computational models, we proposed B-NDRA, a computational framework designed for the discovery of drug resistance-related ncRNA. Initially, we constructed a heterogeneous graph that integrates ncRNA-drug resistance pairs, leveraging both known associations and similarity fusion information between ncRNAs and drug resistance. Subsequently, we employed an attention mechanism to aggregate local features of graph nodes following a dimensionality reduction of node features. Further, a graph neural network (GNN) facilitated the learning of global node embeddings. Notably, the integration of dual adaptive deep adjustment architectures, encompassing intrablock and interblock methodologies, enabled efficient extraction of global features while balancing local and global features. Finally, B-NDRA employed a multilayer perceptron to predict associations between ncRNAs and drug resistance. Through rigorous 5-fold cross-validation, B-NDRA achieved average AUC, AUPR, Accuracy, Precision, Recall, and F1-score values of 92.2%, 91.9%, 84.88%, 86.9%, 82.37%, and 84.44%, respectively. Furthermore, comparative evaluations were conducted on established models, namely, GAEMDA, GRPAMDA, and LRGCPND. The results, obtained through three distinct 5-fold cross-validation strategies, demonstrated a notable performance improvement across almost all metrics for our B-NDRA. Specific case studies targeting Doxorubicin and Imatinib further validated the practicality of our B-NDRA in discovering potential NDRA. These results confirm the potential of our B-NDRA as a valuable tool in advancing cancer research and therapeutic development. The source code and data set of B-NDRA can be found at https://github.com/XuanLi1145/B-NDRA.
Collapse
Affiliation(s)
- Yi Zhang
- Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin 541004, China
| | - Xuanzhao Li
- Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
3
|
Pudova E, Kobelyatskaya A, Emelyanova M, Snezhkina A, Fedorova M, Pavlov V, Guvatova Z, Dalina A, Kudryavtseva A. Non-Coding RNAs and the Development of Chemoresistance to Docetaxel in Prostate Cancer: Regulatory Interactions and Approaches Based on Machine Learning Methods. Life (Basel) 2023; 13:2304. [PMID: 38137905 PMCID: PMC10744715 DOI: 10.3390/life13122304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Chemotherapy based on taxane-class drugs is the gold standard for treating advanced stages of various oncological diseases. However, despite the favorable response trends, most patients eventually develop resistance to this therapy. Drug resistance is the result of a combination of different events in the tumor cells under the influence of the drug, a comprehensive understanding of which has yet to be determined. In this review, we examine the role of the major classes of non-coding RNAs in the development of chemoresistance in the case of prostate cancer, one of the most common and socially significant types of cancer in men worldwide. We will focus on recent findings from experimental studies regarding the prognostic potential of the identified non-coding RNAs. Additionally, we will explore novel approaches based on machine learning to study these regulatory molecules, including their role in the development of drug resistance.
Collapse
Affiliation(s)
- Elena Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Marina Emelyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladislav Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Zulfiya Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia
| | - Alexandra Dalina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
4
|
Hu X, Dong Y, Zhang J, Deng L. HGCLMDA: Predicting mRNA-Drug Sensitivity Associations via Hypergraph Contrastive Learning. J Chem Inf Model 2023; 63:5936-5946. [PMID: 37674276 DOI: 10.1021/acs.jcim.3c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The identification of drug sensitivity to mRNA interactions is crucial for drug development and disease treatment, but traditional experimental methods for verifying mRNA-drug sensitivity associations are labor-intensive and time-consuming. In this study, we present a hypergraph contrastive learning approach, HGCLMDA, to predict potential mRNA-drug sensitivity associations. HGCLMDA integrates a graph convolutional network-based method with a hypergraph convolutional network to mine high-order relationships between mRNA-drug association pairs. The proposed cross-view contrastive learning architecture improves the model's learning ability, and the inner product is used to obtain the mRNA-drug sensitivity association score. Our experiments on three mRNA-drug sensitivity association data sets show that HGCLMDA outperforms traditional graph convolutional network-based methods, graph augmentation-based contrastive learning methods, and state-of-the-art association prediction methods. The visualization experiment demonstrates the strong discrimination ability of the mRNA and drug embeddings learned by HGCLMDA, and experiments on sparse data sets showcase the performance and robustness of the method. In-depth analysis of hypergraph structures reveals a crucial role that hypergraphs play in enhancing the performance of models. The case study highlights the potential of HGCLMDA as a valuable tool for predicting mRNA-drug sensitivity associations. The interpretive analysis reveals that HGCLMDA effectively models the similarity between mRNA-mRNA and drug-drug interactions.
Collapse
Affiliation(s)
- Xiaowen Hu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yihan Dong
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jiaxuan Zhang
- Department of Electrical and Computer Engineering, University of California, San Diego, California 92092, United States
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Hu X, Liu D, Zhang J, Fan Y, Ouyang T, Luo Y, Zhang Y, Deng L. A comprehensive review and evaluation of graph neural networks for non-coding RNA and complex disease associations. Brief Bioinform 2023; 24:bbad410. [PMID: 37985451 DOI: 10.1093/bib/bbad410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/07/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Non-coding RNAs (ncRNAs) play a critical role in the occurrence and development of numerous human diseases. Consequently, studying the associations between ncRNAs and diseases has garnered significant attention from researchers in recent years. Various computational methods have been proposed to explore ncRNA-disease relationships, with Graph Neural Network (GNN) emerging as a state-of-the-art approach for ncRNA-disease association prediction. In this survey, we present a comprehensive review of GNN-based models for ncRNA-disease associations. Firstly, we provide a detailed introduction to ncRNAs and GNNs. Next, we delve into the motivations behind adopting GNNs for predicting ncRNA-disease associations, focusing on data structure, high-order connectivity in graphs and sparse supervision signals. Subsequently, we analyze the challenges associated with using GNNs in predicting ncRNA-disease associations, covering graph construction, feature propagation and aggregation, and model optimization. We then present a detailed summary and performance evaluation of existing GNN-based models in the context of ncRNA-disease associations. Lastly, we explore potential future research directions in this rapidly evolving field. This survey serves as a valuable resource for researchers interested in leveraging GNNs to uncover the complex relationships between ncRNAs and diseases.
Collapse
Affiliation(s)
- Xiaowen Hu
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| | - Dayun Liu
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| | - Jiaxuan Zhang
- Department of Electrical and Computer Engineering, University of California, San Diego,92093 CA, USA
| | - Yanhao Fan
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| | - Tianxiang Ouyang
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| | - Yue Luo
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| | - Yuanpeng Zhang
- school of software, Xinjiang University, 830046 Urumqi, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| |
Collapse
|
6
|
Zhang P, Wang Z, Sun W, Xu J, Zhang W, Wu K, Wong L, Li L. RDRGSE: A Framework for Noncoding RNA-Drug Resistance Discovery by Incorporating Graph Skeleton Extraction and Attentional Feature Fusion. ACS OMEGA 2023; 8:27386-27397. [PMID: 37546619 PMCID: PMC10398708 DOI: 10.1021/acsomega.3c02763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
Identifying noncoding RNAs (ncRNAs)-drug resistance association computationally would have a marked effect on understanding ncRNA molecular function and drug target mechanisms and alleviating the screening cost of corresponding biological wet experiments. Although graph neural network-based methods have been developed and facilitated the detection of ncRNAs related to drug resistance, it remains a challenge to explore a highly trusty ncRNA-drug resistance association prediction framework, due to inevitable noise edges originating from the batch effect and experimental errors. Herein, we proposed a framework, referred to as RDRGSE (RDR association prediction by using graph skeleton extraction and attentional feature fusion), for detecting ncRNA-drug resistance association. Specifically, starting with the construction of the original ncRNA-drug resistance association as a bipartite graph, RDRGSE took advantage of a bi-view skeleton extraction strategy to obtain two types of skeleton views, followed by a graph neural network-based estimator for iteratively optimizing skeleton views aimed at learning high-quality ncRNA-drug resistance edge embedding and optimal graph skeleton structure, jointly. Then, RDRGSE adopted adaptive attentional feature fusion to obtain final edge embedding and identified potential RDRAs under an end-to-end pattern. Comprehensive experiments were conducted, and experimental results indicated the significant advantage of a skeleton structure for ncRNA-drug resistance association discovery. Compared with state-of-the-art approaches, RDRGSE improved the prediction performance by 6.7% in terms of AUC and 6.1% in terms of AUPR. Also, ablation-like analysis and independent case studies corroborated RDRGSE generalization ability and robustness. Overall, RDRGSE provides a powerful computational method for ncRNA-drug resistance association prediction, which can also serve as a screening tool for drug resistance biomarkers.
Collapse
Affiliation(s)
- Ping Zhang
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zilin Wang
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Weicheng Sun
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsheng Xu
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Weihan Zhang
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Wu
- Department
of Biochemistry, University of California
Riverside, Riverside, California 92521, United States
| | - Leon Wong
- Guangxi
Key Lab of Human-Machine Interaction and Intelligent Decision, Guangxi Academy of Sciences, Nanning 530007, China
- Institute
of Machine Learning and Systems Biology, School of Electronics and
Information Engineering, Tongji University, Shanghai 200092, China
| | - Li Li
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- Hubei
Hongshan Laboratory, Huazhong Agricultural
University, Wuhan 430070, China
| |
Collapse
|
7
|
Ai N, Liang Y, Yuan H, Ouyang D, Xie S, Liu X. GDCL-NcDA: identifying non-coding RNA-disease associations via contrastive learning between deep graph learning and deep matrix factorization. BMC Genomics 2023; 24:424. [PMID: 37501127 PMCID: PMC10373414 DOI: 10.1186/s12864-023-09501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
Non-coding RNAs (ncRNAs) draw much attention from studies widely in recent years because they play vital roles in life activities. As a good complement to wet experiment methods, computational prediction methods can greatly save experimental costs. However, high false-negative data and insufficient use of multi-source information can affect the performance of computational prediction methods. Furthermore, many computational methods do not have good robustness and generalization on different datasets. In this work, we propose an effective end-to-end computing framework, called GDCL-NcDA, of deep graph learning and deep matrix factorization (DMF) with contrastive learning, which identifies the latent ncRNA-disease association on diverse multi-source heterogeneous networks (MHNs). The diverse MHNs include different similarity networks and proven associations among ncRNAs (miRNAs, circRNAs, and lncRNAs), genes, and diseases. Firstly, GDCL-NcDA employs deep graph convolutional network and multiple attention mechanisms to adaptively integrate multi-source of MHNs and reconstruct the ncRNA-disease association graph. Then, GDCL-NcDA utilizes DMF to predict the latent disease-associated ncRNAs based on the reconstructed graphs to reduce the impact of the false-negatives from the original associations. Finally, GDCL-NcDA uses contrastive learning (CL) to generate a contrastive loss on the reconstructed graphs and the predicted graphs to improve the generalization and robustness of our GDCL-NcDA framework. The experimental results show that GDCL-NcDA outperforms highly related computational methods. Moreover, case studies demonstrate the effectiveness of GDCL-NcDA in identifying the associations among diversiform ncRNAs and diseases.
Collapse
Affiliation(s)
- Ning Ai
- Peng Cheng Laboratory, Shenzhen, 518005, Guangdong, China
- School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, China
| | - Yong Liang
- Peng Cheng Laboratory, Shenzhen, 518005, Guangdong, China.
- Pazhou Laboratory (Huangpu), Guangzhou, 510555, Guangdong, China.
| | - Haoliang Yuan
- School of Automation, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Dong Ouyang
- Peng Cheng Laboratory, Shenzhen, 518005, Guangdong, China
- School of Computer Science and Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, China
| | - Shengli Xie
- Institute of Intelligent Information Processing, Guangdong University of Technology, Guangzhou, 510000, Guangdong, China
| | - Xiaoying Liu
- Computer Engineering Technical College, Guangdong Polytechnic of Science and Technology, Zhuhai, Guangdong, 519090, China
| |
Collapse
|
8
|
Dou B, Zhu Z, Merkurjev E, Ke L, Chen L, Jiang J, Zhu Y, Liu J, Zhang B, Wei GW. Machine Learning Methods for Small Data Challenges in Molecular Science. Chem Rev 2023; 123:8736-8780. [PMID: 37384816 PMCID: PMC10999174 DOI: 10.1021/acs.chemrev.3c00189] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Small data are often used in scientific and engineering research due to the presence of various constraints, such as time, cost, ethics, privacy, security, and technical limitations in data acquisition. However, big data have been the focus for the past decade, small data and their challenges have received little attention, even though they are technically more severe in machine learning (ML) and deep learning (DL) studies. Overall, the small data challenge is often compounded by issues, such as data diversity, imputation, noise, imbalance, and high-dimensionality. Fortunately, the current big data era is characterized by technological breakthroughs in ML, DL, and artificial intelligence (AI), which enable data-driven scientific discovery, and many advanced ML and DL technologies developed for big data have inadvertently provided solutions for small data problems. As a result, significant progress has been made in ML and DL for small data challenges in the past decade. In this review, we summarize and analyze several emerging potential solutions to small data challenges in molecular science, including chemical and biological sciences. We review both basic machine learning algorithms, such as linear regression, logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), kernel learning (KL), random forest (RF), and gradient boosting trees (GBT), and more advanced techniques, including artificial neural network (ANN), convolutional neural network (CNN), U-Net, graph neural network (GNN), Generative Adversarial Network (GAN), long short-term memory (LSTM), autoencoder, transformer, transfer learning, active learning, graph-based semi-supervised learning, combining deep learning with traditional machine learning, and physical model-based data augmentation. We also briefly discuss the latest advances in these methods. Finally, we conclude the survey with a discussion of promising trends in small data challenges in molecular science.
Collapse
Affiliation(s)
- Bozheng Dou
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Zailiang Zhu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Ekaterina Merkurjev
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lu Ke
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Long Chen
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Jian Jiang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yueying Zhu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Bengong Zhang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
Li L, Zhao Y, Yu H, Wang Z, Zhao Y, Jiang M. An XGBoost Algorithm Based on Molecular Structure and Molecular Specificity Parameters for Predicting Gas Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6756-6766. [PMID: 37130050 DOI: 10.1021/acs.langmuir.3c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper, an improved Extreme Gradient Boosting (XGBoost) algorithm based on the Graph Isomorphic Network (GIN) for predicting the adsorption performance of metal-organic frameworks (MOFs) is developed. It is shown that the graph isomorphic layer of this algorithm can directly learn the feature representation of materials from the connection of atoms in MOFs. Then, XGBoost can be used to predict the adsorption performance of MOFs based on feature representation. In this sense, it is not only possible to achieve end-to-end prediction directly from the structure of MOFs to adsorption performance but also to ensure the accuracy of prediction. The comparison between Grand Canonical Monte Carlo (GCMC) simulation and prediction supports the performance and effectiveness of the proposed algorithm.
Collapse
Affiliation(s)
- Lujun Li
- Department of Automation, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Yiming Zhao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Haibin Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Zhuo Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Yongjia Zhao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Mingqi Jiang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Gao M, Shang X. Identification of associations between lncRNA and drug resistance based on deep learning and attention mechanism. Front Microbiol 2023; 14:1147778. [PMID: 37180267 PMCID: PMC10169643 DOI: 10.3389/fmicb.2023.1147778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Abnormal lncRNA expression can lead to the resistance of tumor cells to anticancer drugs, which is a crucial factor leading to high cancer mortality. Studying the relationship between lncRNA and drug resistance becomes necessary. Recently, deep learning has achieved promising results in predicting biomolecular associations. However, to our knowledge, deep learning-based lncRNA-drug resistance associations prediction has yet to be studied. Methods Here, we proposed a new computational model, DeepLDA, which used deep neural networks and graph attention mechanisms to learn lncRNA and drug embeddings for predicting potential relationships between lncRNAs and drug resistance. DeepLDA first constructed similarity networks for lncRNAs and drugs using known association information. Subsequently, deep graph neural networks were utilized to automatically extract features from multiple attributes of lncRNAs and drugs. These features were fed into graph attention networks to learn lncRNA and drug embeddings. Finally, the embeddings were used to predict potential associations between lncRNAs and drug resistance. Results Experimental results on the given datasets show that DeepLDA outperforms other machine learning-related prediction methods, and the deep neural network and attention mechanism can improve model performance. Dicsussion In summary, this study proposes a powerful deep-learning model that can effectively predict lncRNA-drug resistance associations and facilitate the development of lncRNA-targeted drugs. DeepLDA is available at https://github.com/meihonggao/DeepLDA.
Collapse
Affiliation(s)
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|