1
|
Shorkey SA, Zhang Y, Sharp J, Clingman S, Nguyen L, Chen J, Chen M. Tracking flaviviral protease conformational dynamics by tuning single-molecule nanopore tweezers. Biophys J 2024:S0006-3495(24)00740-9. [PMID: 39578408 DOI: 10.1016/j.bpj.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/17/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
The flaviviral NS2B/NS3 protease is a conserved enzyme required for flavivirus replication. Its highly dynamic conformation poses major challenges but also offers opportunities for antiviral inhibition. Here, we established a nanopore tweezers-based platform to monitor NS2B/NS3 conformational dynamics in real time. Molecular simulations coupled with single-channel current recording measurements revealed that the protease could be captured in the middle of the ClyA nanopore lumen, stabilized mainly by dynamic electrostatic interactions. We designed a new Salmonella typhi ClyA nanopore with enhanced nanopore/protease interaction that can resolve the open and closed states at the single-molecule level for the first time. We demonstrated that the tailored ClyA could track the conformational transitions of the West Nile NS2B/NS3 protease and unravel the conformational energy landscape of various protease constructs through population and kinetic analysis. The new ClyA-protease platform paves a way to search for new allosteric inhibitors that target the NS2B and NS3 interface.
Collapse
Affiliation(s)
- Spencer A Shorkey
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Yumeng Zhang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Jacqueline Sharp
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Sophia Clingman
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Ly Nguyen
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Jianhan Chen
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts; Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts.
| | - Min Chen
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts; Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts.
| |
Collapse
|
2
|
Li S, Chen J. An Intermediate Resolution Model of RNA Dynamics and Phase Separation with Explicit Mg 2 + . BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.17.624048. [PMID: 39605385 PMCID: PMC11601354 DOI: 10.1101/2024.11.17.624048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
RNAs are major drivers of phase separation in the formation of biomolecular condensates. Recent studies suggest that RNAs can also undergo protein-free phase separation in the presence of divalent ions or crowding agents. Much remains to be understood regarding how the complex interplay of base stacking, base pairing, electrostatics, ion interactions, and structural propensities governs the phase behaviour of RNAs. Here we develop an intermediate resolution model for condensates of RNAs (iConRNA) that can capture key local and long-range structure features of dynamic RNAs and simulate their spontaneous phase transitions in the presence ofMg 2 + . Representing each nucleotide using 6 or 7 beads, iConRNA considers specific RNA base stacking and pairing interactions and includes explicitMg 2 + ions to studyMg 2 + -induced phase separation. Parametrized using theoretical and experimental data, the model can correctly reproduce the chain properties of A-form helical poly(rA) and coil poly(rU), and essential structures of several RNA hairpins. With an effectiveMg 2 + ion model, iConRNA simulations successfully recapitulate the experimentally observed lower critical solution temperature (LCST)-type phase separation of poly(rA) and the dissolution of poly(rU). Furthermore, the phase diagrams of CAG/CUG/CUU-repeat RNAs correctly reproduce the experimentally observed sequence- and length-dependence of phase separation propensity. These results suggest that iConRNA can be a viable tool for studying homotypic RNA and potentially heterotypic RNA-protein phase separations.
Collapse
Affiliation(s)
- Shanlong Li
- Department of Chemistry University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Cao F, von Bülow S, Tesei G, Lindorff‐Larsen K. A coarse-grained model for disordered and multi-domain proteins. Protein Sci 2024; 33:e5172. [PMID: 39412378 PMCID: PMC11481261 DOI: 10.1002/pro.5172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 10/20/2024]
Abstract
Many proteins contain more than one folded domain, and such modular multi-domain proteins help expand the functional repertoire of proteins. Because of their larger size and often substantial dynamics, it may be difficult to characterize the conformational ensembles of multi-domain proteins by simulations. Here, we present a coarse-grained model for multi-domain proteins that is both fast and provides an accurate description of the global conformational properties in solution. We show that the accuracy of a one-bead-per-residue coarse-grained model depends on how the interaction sites in the folded domains are represented. Specifically, we find excessive domain-domain interactions if the interaction sites are located at the position of the Cα atoms. We also show that if the interaction sites are located at the center of mass of the residue, we obtain good agreement between simulations and experiments across a wide range of proteins. We then optimize our previously described CALVADOS model using this center-of-mass representation, and validate the resulting model using independent data. Finally, we use our revised model to simulate phase separation of both disordered and multi-domain proteins, and to examine how the stability of folded domains may differ between the dilute and dense phases. Our results provide a starting point for understanding interactions between folded and disordered regions in proteins, and how these regions affect the propensity of proteins to self-associate and undergo phase separation.
Collapse
Affiliation(s)
- Fan Cao
- Structural Biology and NMR Laboratory & the Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Sören von Bülow
- Structural Biology and NMR Laboratory & the Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Kresten Lindorff‐Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm‐Lang Centre for Protein Science, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Wasim A, Menon S, Mondal J. Modulation of α-synuclein aggregation amid diverse environmental perturbation. eLife 2024; 13:RP95180. [PMID: 39087984 PMCID: PMC11293868 DOI: 10.7554/elife.95180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Intrinsically disordered protein α-synuclein (αS) is implicated in Parkinson's disease due to its aberrant aggregation propensity. In a bid to identify the traits of its aggregation, here we computationally simulate the multi-chain association process of αS in aqueous as well as under diverse environmental perturbations. In particular, the aggregation of αS in aqueous and varied environmental condition led to marked concentration differences within protein aggregates, resembling liquid-liquid phase separation (LLPS). Both saline and crowded settings enhanced the LLPS propensity. However, the surface tension of αS droplet responds differently to crowders (entropy-driven) and salt (enthalpy-driven). Conformational analysis reveals that the IDP chains would adopt extended conformations within aggregates and would maintain mutually perpendicular orientations to minimize inter-chain electrostatic repulsions. The droplet stability is found to stem from a diminished intra-chain interactions in the C-terminal regions of αS, fostering inter-chain residue-residue interactions. Intriguingly, a graph theory analysis identifies small-world-like networks within droplets across environmental conditions, suggesting the prevalence of a consensus interaction patterns among the chains. Together these findings suggest a delicate balance between molecular grammar and environment-dependent nuanced aggregation behavior of αS.
Collapse
Affiliation(s)
- Abdul Wasim
- Tata Institute of Fundamental ResearchHyderabadIndia
| | - Sneha Menon
- Tata Institute of Fundamental ResearchHyderabadIndia
| | | |
Collapse
|
5
|
Shorkey SA, Zhang Y, Sharp J, Clingman S, Nguyen L, Chen J, Chen M. Tuning single-molecule ClyA nanopore tweezers for real-time tracking of the conformational dynamics of West Nile viral NS2B/NS3 protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594247. [PMID: 38798384 PMCID: PMC11118314 DOI: 10.1101/2024.05.14.594247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The flaviviral NS2B/NS3 protease is a conserved enzyme required for flavivirus replication. Its highly dynamic conformation poses major challenges but also offers opportunities for antiviral inhibition. Here, we established a nanopore tweezers-based platform to monitor NS2B/NS3 conformational dynamics in real-time. Molecular simulations coupled with electrophysiology revealed that the protease could be captured in the middle of the ClyA nanopore lumen, stabilized mainly by dynamic electrostatic interactions. We designed a new Salmonella typhi ClyA nanopore with enhanced nanopore/protease interaction that can resolve the open and closed states at the single-molecule level for the first time. We demonstrated that the tailored ClyA could track the conformational transitions of the West Nile NS2B/NS3 protease and unravel the conformational energy landscape of various protease constructs through population and kinetic analysis. The new ClyA-protease platform paves a way to high-throughput screening strategies for discovering new allosteric inhibitors that target the NS2B and NS3 interface.
Collapse
|
6
|
Li S, Zhang Y, Chen J. Backbone interactions and secondary structures in phase separation of disordered proteins. Biochem Soc Trans 2024; 52:319-329. [PMID: 38348795 DOI: 10.1042/bst20230618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/29/2024]
Abstract
Intrinsically disordered proteins (IDPs) are one of the major drivers behind the formation and characteristics of biomolecular condensates. Due to their inherent flexibility, the backbones of IDPs are significantly exposed, rendering them highly influential and susceptible to biomolecular phase separation. In densely packed condensates, exposed backbones have a heightened capacity to interact with neighboring protein chains, which might lead to strong coupling between the secondary structures and phase separation and further modulate the subsequent transitions of the condensates, such as aging and fibrillization. In this mini-review, we provide an overview of backbone-mediated interactions and secondary structures within biomolecular condensates to underscore the importance of protein backbones in phase separation. We further focus on recent advances in experimental techniques and molecular dynamics simulation methods for probing and exploring the roles of backbone interactions and secondary structures in biomolecular phase separation involving IDPs.
Collapse
Affiliation(s)
- Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, U.S.A
| | - Yumeng Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, U.S.A
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, U.S.A
| |
Collapse
|
7
|
Zhang Y, Li S, Gong X, Chen J. Toward Accurate Simulation of Coupling between Protein Secondary Structure and Phase Separation. J Am Chem Soc 2024; 146:342-357. [PMID: 38112495 PMCID: PMC10842759 DOI: 10.1021/jacs.3c09195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Intrinsically disordered proteins (IDPs) frequently mediate phase separation that underlies the formation of a biomolecular condensate. Together with theory and experiment, efficient coarse-grained (CG) simulations have been instrumental in understanding the sequence-specific phase separation of IDPs. However, the widely used Cα-only models are limited in capturing the peptide nature of IDPs, particularly backbone-mediated interactions and effects of secondary structures, in phase separation. Here, we describe a hybrid resolution (HyRes) protein model toward a more accurate description of the backbone and transient secondary structures in phase separation. With an atomistic backbone and coarse-grained side chains, HyRes can semiquantitatively capture the residue helical propensity and overall chain dimension of monomeric IDPs. Using GY-23 as a model system, we show that HyRes is efficient enough for the direct simulation of spontaneous phase separation and, at the same time, appears accurate enough to resolve the effects of single His to Lys mutations. HyRes simulations also successfully predict increased β-structure formation in the condensate, consistent with available experimental CD data. We further utilize HyRes to study the phase separation of TPD-43, where several disease-related mutants in the conserved region (CR) have been shown to affect residual helicities and modulate the phase separation propensity as measured by the saturation concentration. The simulations successfully recapitulate the effect of these mutants on the helicity and phase separation propensity of TDP-43 CR. Analyses reveal that the balance between backbone and side chain-mediated interactions, but not helicity itself, actually determines phase separation propensity. These results support that HyRes represents an effective protein model for molecular simulation of IDP phase separation and will help to elucidate the coupling between transient secondary structures and phase separation.
Collapse
Affiliation(s)
| | | | - Xiping Gong
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Zhang Y, Li S, Gong X, Chen J. Accurate Simulation of Coupling between Protein Secondary Structure and Liquid-Liquid Phase Separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554378. [PMID: 37662293 PMCID: PMC10473686 DOI: 10.1101/2023.08.22.554378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Intrinsically disordered proteins (IDPs) frequently mediate liquid-liquid phase separation (LLPS) that underlies the formation of membraneless organelles. Together with theory and experiment, efficient coarse-grained (CG) simulations have been instrumental in understanding sequence-specific phase separation of IDPs. However, the widely-used Cα-only models are severely limited in capturing the peptide nature of IDPs, including backbone-mediated interactions and effects of secondary structures, in LLPS. Here, we describe a hybrid resolution (HyRes) protein model for accurate description of the backbone and transient secondary structures in LLPS. With an atomistic backbone and coarse-grained side chains, HyRes accurately predicts the residue helical propensity and chain dimension of monomeric IDPs. Using GY-23 as a model system, we show that HyRes is efficient enough for direct simulation of spontaneous phase separation, and at the same time accurate enough to resolve the effects of single mutations. HyRes simulations also successfully predict increased beta-sheet formation in the condensate, consistent with available experimental data. We further utilize HyRes to study the phase separation of TPD-43, where several disease-related mutants in the conserved region (CR) have been shown to affect residual helicities and modulate LLPS propensity. The simulations successfully recapitulate the effect of these mutants on the helicity and LLPS propensity of TDP-43 CR. Analyses reveal that the balance between backbone and sidechain-mediated interactions, but not helicity itself, actually determines LLPS propensity. We believe that the HyRes model represents an important advance in the molecular simulation of LLPS and will help elucidate the coupling between IDP transient secondary structures and phase separation.
Collapse
Affiliation(s)
| | | | - Xiping Gong
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
9
|
Ugarte La Torre D, Takada S, Sugita Y. Extension of the iSoLF implicit-solvent coarse-grained model for multicomponent lipid bilayers. J Chem Phys 2023; 159:075101. [PMID: 37581417 DOI: 10.1063/5.0160417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
iSoLF is a coarse-grained (CG) model for lipid molecules with the implicit-solvent approximation used in molecular dynamics (MD) simulations of biological membranes. Using the original iSoLF (iSoLFv1), MD simulations of lipid bilayers consisting of either POPC or DPPC and these bilayers, including membrane proteins, can be performed. Here, we improve the original model, explicitly treating the electrostatic interactions between different lipid molecules and adding CG particle types. As a result, the available lipid types increase to 30. To parameterize the potential functions of the new model, we performed all-atom MD simulations of each lipid at three different temperatures using the CHARMM36 force field and the modified TIP3P model. Then, we parameterized both the bonded and non-bonded interactions to fit the area per lipid and the membrane thickness of each lipid bilayer by using the multistate Boltzmann Inversion method. The final model reproduces the area per lipid and the membrane thickness of each lipid bilayer at the three temperatures. We also examined the applicability of the new model, iSoLFv2, to simulate the phase behaviors of mixtures of DOPC and DPPC at different concentrations. The simulation results with iSoLFv2 are consistent with those using Dry Martini and Martini 3, although iSoLFv2 requires much fewer computations. iSoLFv2 has been implemented in the GENESIS MD software and is publicly available.
Collapse
Affiliation(s)
- Diego Ugarte La Torre
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yuji Sugita
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Hyogo, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| |
Collapse
|
10
|
Saurabh S, Nadendla K, Purohit SS, Sivakumar PM, Cetinel S. Fuzzy Drug Targets: Disordered Proteins in the Drug-Discovery Realm. ACS OMEGA 2023; 8:9729-9747. [PMID: 36969402 PMCID: PMC10034788 DOI: 10.1021/acsomega.2c07708] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Intrinsically disordered proteins (IDPs) and regions (IDRs) form a large part of the eukaryotic proteome. Contrary to the structure-function paradigm, the disordered proteins perform a myriad of functions in vivo. Consequently, they are involved in various disease pathways and are plausible drug targets. Unlike folded proteins, that have a defined structure and well carved out drug-binding pockets that can guide lead molecule selection, the disordered proteins require alternative drug-development methodologies that are based on an acceptable picture of their conformational ensemble. In this review, we discuss various experimental and computational techniques that contribute toward understanding IDP "structure" and describe representative pursuances toward IDP-targeting drug development. We also discuss ideas on developing rational drug design protocols targeting IDPs.
Collapse
Affiliation(s)
- Suman Saurabh
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Karthik Nadendla
- Center
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Lensfield
Road, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Shubh Sanket Purohit
- Department
of Clinical Haematology, Sahyadri Superspeciality
Hospital, Pune, Maharashtra 411038, India
| | - Ponnurengam Malliappan Sivakumar
- Institute
of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School
of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
- Nanotechnology
Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology
Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
- Faculty of
Engineering and Natural Sciences, Molecular Biology, Genetics and
Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
11
|
Zhang Y, Liu X, Chen J. Coupled binding and folding of disordered SPIN N-terminal region in myeloperoxidase inhibition. Front Mol Biosci 2023; 10:1130189. [PMID: 36845554 PMCID: PMC9948029 DOI: 10.3389/fmolb.2023.1130189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Gram-positive pathogenic bacteria Staphylococcus express and secret staphylococcal peroxidase inhibitor (SPIN) proteins to help evade neutrophil-mediated immunity by inhibiting the activity of the main oxidative-defense player myeloperoxidase (MPO) enzyme. SPIN contains a structured 3-helix bundle C-terminal domain, which can specifically bind to MPO with high affinity, and an intrinsically disordered N-terminal domain (NTD), which folds into a structured β-hairpin and inserts itself into the active site of MPO for inhibition. Mechanistic insights of the coupled folding and binding process are needed in order to better understand how residual structures and/or conformational flexibility of NTD contribute to the different strengths of inhibition of SPIN homologs. In this work, we applied atomistic molecular dynamics simulations on two SPIN homologs, from S. aureus and S. delphini, respectively, which share high sequence identity and similarity, to explore the possible mechanistic basis for their different inhibition efficacies on human MPO. Direct simulations of the unfolding and unbinding processes at 450 K reveal that these two SPIN/MPO complexes systems follow surprisingly different mechanisms of coupled binding and folding. While coupled binding and folding of SPIN-aureus NTD is highly cooperative, SPIN-delphini NTD appears to mainly utilize a conformational selection-like mechanism. These observations are in contrast to an overwhelming prevalence of induced folding-like mechanisms for intrinsically disordered proteins that fold into helical structures upon binding. Further simulations of unbound SPIN NTDs at room temperature reveal that SPIN-delphini NTD has a much stronger propensity of forming β-hairpin like structures, consistent with its preference to fold and then bind. These may help explain why the inhibition strength is not well correlated with binding affinity for different SPIN homologs. Altogether, our work establishes the relationship between the residual conformational stability of SPIN-NTD and their inhibitory function, which can help us develop new strategies towards treating Staphylococcal infections.
Collapse
Affiliation(s)
| | | | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
12
|
Valdes-Garcia G, Heo L, Lapidus LJ, Feig M. Modeling Concentration-dependent Phase Separation Processes Involving Peptides and RNA via Residue-Based Coarse-Graining. J Chem Theory Comput 2023; 19:10.1021/acs.jctc.2c00856. [PMID: 36607820 PMCID: PMC10323037 DOI: 10.1021/acs.jctc.2c00856] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Biomolecular condensation, especially liquid-liquid phase separation, is an important physical process with relevance for a number of different aspects of biological functions. Key questions of what drives such condensation, especially in terms of molecular composition, can be addressed via computer simulations, but the development of computationally efficient yet physically realistic models has been challenging. Here, the coarse-grained model COCOMO is introduced that balances the polymer behavior of peptides and RNA chains with their propensity to phase separate as a function of composition and concentration. COCOMO is a residue-based model that combines bonded terms with short- and long-range terms, including a Debye-Hückel solvation term. The model is highly predictive of experimental data on phase-separating model systems. It is also computationally efficient and can reach the spatial and temporal scales on which biomolecular condensation is observed with moderate computational resources.
Collapse
Affiliation(s)
- Gilberto Valdes-Garcia
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Lim Heo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Lisa J. Lapidus
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|