1
|
Hemant Kumar S, Venkatachalapathy M, Sistla R, Poongavanam V. Advances in molecular glues: exploring chemical space and design principles for targeted protein degradation. Drug Discov Today 2024; 29:104205. [PMID: 39393773 DOI: 10.1016/j.drudis.2024.104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
The discovery of the E3 ligase cereblon (CRBN) as the target of thalidomide and its analogs revolutionized the field of targeted protein degradation (TPD). This ubiquitin-mediated degradation pathway was first harnessed by bivalent degraders. Recently, the emergence of low-molecular-weight molecular glue degraders (MGDs) has expanded the TPD landscape, because MGDs operate via the same mechanism while offering attractive physicochemical properties that are consistent with small-molecule therapeutics. This review delves into the discovery and advancement of MGDs, with case studies on cyclin K and the zinc finger protein IKZF2, highlighting the design principles, biological assays and therapeutic applications. Additionally, it examines the chemical space of molecular glues and outlines the collaborative efforts that are fueling innovation in this field.
Collapse
Affiliation(s)
- S Hemant Kumar
- thinkMolecular Technologies Pvt. Ltd, Haralur, Bangalore, KA 560102, India
| | | | - Ramesh Sistla
- thinkMolecular Technologies Pvt. Ltd, Haralur, Bangalore, KA 560102, India.
| | | |
Collapse
|
2
|
Tracy WF, Davies GHM, Jia L, Evans ED, Sun Z, Buenviaje J, Khambatta G, Yu S, Shi L, Shanmugasundaram V, Moreno J, Cherney EC, Davies HML. Asymmetric Dirhodium-Catalyzed Modification of Immunomodulatory Imide Drugs and Their Biological Assessment. ACS Med Chem Lett 2024; 15:1575-1583. [PMID: 39291008 PMCID: PMC11403733 DOI: 10.1021/acsmedchemlett.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Cereblon (CRBN) has been successfully co-opted to affect the targeted degradation of "undruggable" proteins with immunomodulatory imide drugs (IMiDs). IMiDs act as molecule glues that facilitate ternary complex formation between CRBN and a target protein, leading to ubiquitination and proteasomal degradation. Subtle structural modifications often cause profound and sometimes unpredictable changes in the degradation selectivity. Herein, we successfully utilize enantioselective cyclopropanation and cyclopropenation on intact glutarimides to enable the preparation of stereochemically and regiochemically matched molecular pairs for structure-activity relationship (SAR) analysis across several classical CRBN neosubstrates. The resulting glutarimide analogs were found to reside in unique chemical space when compared to other IMiDs in the public domain. SAR studies revealed that, in addition to the more precedented impacts of regiochemistry, stereochemical modifications far from the glutarimide can lead to divergent neosubstrate selectivity. These findings emphasize the importance of enabling enantioselective methods for glutarimide-containing compounds to tune the degradation selectivity.
Collapse
Affiliation(s)
- William F Tracy
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Geraint H M Davies
- Small Molecule Drug Discovery, Bristol Myers Squibb, Cambridge, Massachusetts 02143, United States
| | - Lei Jia
- Small Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Ethan D Evans
- Small Molecule Drug Discovery, Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Zhenghang Sun
- Small Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Jennifer Buenviaje
- Small Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Gody Khambatta
- Small Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Shan Yu
- Small Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Lihong Shi
- Small Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | | | - Jesus Moreno
- Small Molecule Drug Discovery, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Emily C Cherney
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Huw M L Davies
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Rovers E, Schapira M. Benchmarking Methods for PROTAC Ternary Complex Structure Prediction. J Chem Inf Model 2024; 64:6162-6173. [PMID: 39087481 DOI: 10.1021/acs.jcim.4c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) are bifunctional compounds that recruit an E3 ligase to a target protein to induce ubiquitination and degradation of the target. Rational optimization of PROTAC requires a structural model of the ternary complex. In the absence of an experimental structure, computational tools have emerged that attempt to predict PROTAC ternary complexes. Here, we systematically benchmark three commonly used tools: PRosettaC, MOE, and ICM. We find that these PROTAC-focused methods produce an array of ternary complex structures, including some that are observed experimentally, but also many that significantly deviate from the crystal structure. Molecular dynamics simulations show that PROTAC complexes may exist in a multiplicity of configurational states and question the use of experimentally observed structures as a reference for accurate predictions. The pioneering computational tools benchmarked here highlight the promises and challenges in the field and may be more valuable when guided by clear structural and biophysical data. The benchmarking data set that we provide may also be valuable for evaluating other and future computational tools for ternary complex modeling.
Collapse
Affiliation(s)
- Evianne Rovers
- Structural Genomics Consortium, Toronto M5G 1L7, Canada
- Department of Pharmacology, University of Toronto, Toronto M5G 1L7, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, Toronto M5G 1L7, Canada
- Department of Pharmacology, University of Toronto, Toronto M5G 1L7, Canada
| |
Collapse
|
4
|
Lemaitre T, Cornu M, Schwalen F, Since M, Kieffer C, Voisin-Chiret AS. Molecular glue degraders: exciting opportunities for novel drug discovery. Expert Opin Drug Discov 2024; 19:433-449. [PMID: 38240114 DOI: 10.1080/17460441.2024.2306845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Molecular Glue Degraders (MGDs) is a concept that refers to a class of compounds that facilitate the interaction between two proteins or molecules within a cell. These compounds act as bridge that enhances specific Protein-Protein Interactions (PPIs). Over the past decade, this technology has gained attention as a potential strategy to target proteins that were traditionally considered undruggable using small molecules. AREAS COVERED This review presents the concept of cellular homeostasis and the balance between protein synthesis and protein degradation. The concept of protein degradation is concerned with molecular glues, which form part of the broader field of Targeted Protein Degradation (TPD). Next, pharmacochemical strategies for the rational design of MGDs are detailed and illustrated by examples of Ligand-Based (LBDD), Structure-Based (SBDD) and Fragment-Based Drug Design (FBDD). EXPERT OPINION Expanding the scope of what can be effectively targeted in the development of treatments for diseases that are incurable or resistant to conventional therapies offers new therapeutic options. The treatment of microbial infections and neurodegenerative diseases is a major societal challenge, and the discovery of MGDs appears to be a promising avenue. Combining different approaches to discover and exploit a variety of innovative therapeutic agents will create opportunities to treat diseases that are still incurable.
Collapse
Affiliation(s)
| | - Marie Cornu
- Normandie University, UNICAEN, CERMN, Caen, France
| | - Florian Schwalen
- Normandie University, UNICAEN, CERMN, Caen, France
- Department of Pharmacy, Caen University Hospital, Caen, France
| | - Marc Since
- Normandie University, UNICAEN, CERMN, Caen, France
| | | | | |
Collapse
|
5
|
Szewczyk SM, Verma I, Edwards JT, Weiss DR, Chekler ELP. Trends in Neosubstrate Degradation by Cereblon-Based Molecular Glues and the Development of Novel Multiparameter Optimization Scores. J Med Chem 2024; 67:1327-1335. [PMID: 38170610 DOI: 10.1021/acs.jmedchem.3c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Molecular glues enable the degradation of previously "undruggable" proteins via the recruitment of cereblon (CRBN) to the target. One major challenge in designing CRBN E3 ligase modulating compounds (CELMoDs) is the selectivity profile toward neosubstrates, proteins recruited by CRBN E3 ligase agents for degradation. Common neosubstrates include Aiolos, Ikaros, GSPT1, CK1α, and SALL4. Unlike achieving potency and selectivity for traditional small molecule inhibitors, reducing the degradation of these neosubstrates is complicated by the ternary nature of the complex formed between the protein, CRBN, and CELMoD. The standard guiding principles of medicinal chemistry, such as enforcing hydrogen bond formation, are less predictive of degradation efficiency and selectivity. Disclosed is an analysis of our glutarimide CELMoD library to identify interpretable chemical features correlated to selectivity profiles and general cytotoxicity. Included is a simple multiparameter optimization function using only three parameters to predict whether molecules will have undesired neosubstrate activity.
Collapse
Affiliation(s)
| | - Isha Verma
- Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Jacob T Edwards
- Bristol Myers Squibb, Redwood City, California 94063, United States
| | - Dahlia R Weiss
- Bristol Myers Squibb, Redwood City, California 94063, United States
| | | |
Collapse
|
6
|
Zhu J, Lai L, Pei J. Toward In Silico Design of Protein-Protein Interaction Stabilizers. ACS CENTRAL SCIENCE 2023; 9:861-863. [PMID: 37252366 PMCID: PMC10214535 DOI: 10.1021/acscentsci.3c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Jintao Zhu
- Center for Quantitative Biology, AAIS, Peking University, Beijing, 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, AAIS, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center
for Life Sciences, AAIS, Peking University, Beijing, 100871, China
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jianfeng Pei
- Center for Quantitative Biology, AAIS, Peking University, Beijing, 100871, China
| |
Collapse
|