Wei J, Zhu Y, Zhuo L, Liu Y, Fu X, Li F. Efficient Deep Model Ensemble Framework for Drug-Target Interaction Prediction.
J Phys Chem Lett 2024;
15:7681-7693. [PMID:
39038219 DOI:
10.1021/acs.jpclett.4c01509]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Accurate prediction of Drug-Target Interactions (DTI) is crucial for drug development. Current state-of-the-art deep learning methods have significantly advanced the field; however, these methods exhibit limitations in predictive performance and the propensity for false negatives. Therefore, we propose EADTN, a simple and efficient ensemble model. We have designed an innovative feature adaptation technique to automatically extract local weights of drugs and targets, and we utilize clustering-enhanced parameter fine-tuning to overcome the issue of false negatives, thereby enhancing its reliability in drug discovery. Based on EADTN, we also propose a Shapley value-based method for identifying key drug substructures, effectively enhancing the model's interpretability. Additionally, we utilized EADTN to reveal potential interactions between NQO1 targets and the drugs SIRT-IN-1 and LY2183240, which were subsequently validated through wet-lab experiments. Experimental evidence demonstrates that EADTN consistently outperforms existing best-performing models across various data sets, promising significant benefits in fields such as drug repositioning.
Collapse