• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4681069)   Today's Articles (0)
For: Kelleci Çeli K F, Karaduman G. Machine Learning-Based Prediction of Drug-Induced Hepatotoxicity: An OvA-QSTR Approach. J Chem Inf Model 2023;63:4602-4614. [PMID: 37494070 DOI: 10.1021/acs.jcim.3c00687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Number Cited by Other Article(s)
1
Singh H, Kunkle BF, Troia AR, Suvarnakar AM, Waterman AC, Khin Y, Korkmaz SY, O'Connor CE, Lewis JH. Drug Induced Liver Injury: Highlights and Controversies in the 2023 Literature. Drug Saf 2025:10.1007/s40264-025-01514-z. [PMID: 39921708 DOI: 10.1007/s40264-025-01514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/10/2025]
2
Bai C, Wu L, Li R, Cao Y, He S, Bo X. Machine Learning-Enabled Drug-Induced Toxicity Prediction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413405. [PMID: 39899688 DOI: 10.1002/advs.202413405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/25/2024] [Indexed: 02/05/2025]
3
Kelleci Çelik F, Doğan S, Karaduman G. Drug-induced torsadogenicity prediction model: An explainable machine learning-driven quantitative structure-toxicity relationship approach. Comput Biol Med 2024;182:109209. [PMID: 39332120 DOI: 10.1016/j.compbiomed.2024.109209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
4
Kelleci Çelik F, Karaduman G. Computational modeling of air pollutants for aquatic risk: Prediction of ecological toxicity and exploring structural characteristics. CHEMOSPHERE 2024;366:143501. [PMID: 39384138 DOI: 10.1016/j.chemosphere.2024.143501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
5
Zhu Y, Zhang Y, Li X, Wang L. 3MTox: A motif-level graph-based multi-view chemical language model for toxicity identification with deep interpretation. JOURNAL OF HAZARDOUS MATERIALS 2024;476:135114. [PMID: 38986414 DOI: 10.1016/j.jhazmat.2024.135114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
6
Khan MZI, Ren JN, Cao C, Ye HYX, Wang H, Guo YM, Yang JR, Chen JZ. Comprehensive hepatotoxicity prediction: ensemble model integrating machine learning and deep learning. Front Pharmacol 2024;15:1441587. [PMID: 39234116 PMCID: PMC11373136 DOI: 10.3389/fphar.2024.1441587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024]  Open
7
Abou Hajal A, Al Meslamani AZ. Overcoming barriers to machine learning applications in toxicity prediction. Expert Opin Drug Metab Toxicol 2024;20:549-553. [PMID: 38088128 DOI: 10.1080/17425255.2023.2294939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 07/25/2024]
8
Umemori Y, Handa K, Yoshimura S, Kageyama M, Iijima T. Development of a Novel In Silico Classification Model to Assess Reactive Metabolite Formation in the Cysteine Trapping Assay and Investigation of Important Substructures. Biomolecules 2024;14:535. [PMID: 38785942 PMCID: PMC11117661 DOI: 10.3390/biom14050535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]  Open
9
Karaduman G, Kelleci Çelik F. Towards safer pesticide management: A quantitative structure-activity relationship based hazard prediction model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;916:170173. [PMID: 38266732 DOI: 10.1016/j.scitotenv.2024.170173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA