1
|
Merz KM, Wei GW, Zhu F. Editorial: Machine Learning in Bio-cheminformatics. J Chem Inf Model 2024; 64:2125-2128. [PMID: 38587006 DOI: 10.1021/acs.jcim.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Affiliation(s)
- Kenneth M Merz
- Department of Chemistry, Michigan State University, Lansing 48824, Michigan, United States
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, Lansing 48824, Michigan, United States
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
2
|
Zhang J, Wang R, Wei L. MucLiPred: Multi-Level Contrastive Learning for Predicting Nucleic Acid Binding Residues of Proteins. J Chem Inf Model 2024; 64:1050-1065. [PMID: 38301174 DOI: 10.1021/acs.jcim.3c01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Protein-molecule interactions play a crucial role in various biological functions, with their accurate prediction being pivotal for drug discovery and design processes. Traditional methods for predicting protein-molecule interactions are limited. Some can only predict interactions with a specific molecule, restricting their applicability, while others target multiple molecule types but fail to efficiently process diverse interaction information, leading to complexity and inefficiency. This study presents a novel deep learning model, MucLiPred, equipped with a dual contrastive learning mechanism aimed at improving the prediction of multiple molecule-protein interactions and the identification of potential molecule-binding residues. The residue-level paradigm focuses on differentiating binding from non-binding residues, illuminating detailed local interactions. The type-level paradigm, meanwhile, analyzes overarching contexts of molecule types, like DNA or RNA, ensuring that representations of identical molecule types gravitate closer in the representational space, bolstering the model's proficiency in discerning interaction motifs. This dual approach enables comprehensive multi-molecule predictions, elucidating the relationships among different molecule types and strengthening precise protein-molecule interaction predictions. Empirical evidence demonstrates MucLiPred's superiority over existing models in robustness and prediction accuracy. The integration of dual contrastive learning techniques amplifies its capability to detect potential molecule-binding residues with precision. Further optimization, separating representational and classification tasks, has markedly improved its performance. MucLiPred thus represents a significant advancement in protein-molecule interaction prediction, setting a new precedent for future research in this field.
Collapse
Affiliation(s)
- Jiashuo Zhang
- School of Software, Shandong University, Jinan 250101, China
| | - Ruheng Wang
- School of Software, Shandong University, Jinan 250101, China
| | - Leyi Wei
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
- Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| |
Collapse
|
3
|
Yu H, Wang R, Qiao J, Wei L. Multi-CGAN: Deep Generative Model-Based Multiproperty Antimicrobial Peptide Design. J Chem Inf Model 2024; 64:316-326. [PMID: 38135439 DOI: 10.1021/acs.jcim.3c01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Antimicrobial peptides are peptides that are effective against bacteria and viruses, and the discovery of new antimicrobial peptides is of great importance to human life and health. Although the design of antimicrobial peptides using machine learning methods has achieved good results in recent years, it remains a challenge to learn and design novel antimicrobial peptides with multiple properties of interest from peptide data with certain property labels. To this end, we propose Multi-CGAN, a deep generative model-based architecture that can learn from single-attribute peptide data and generate antimicrobial peptide sequences with multiple attributes that we need, which may have a potentially wide range of uses in drug discovery. In particular, we verified that our Multi-CGAN generated peptides with the desired properties have good performance in terms of generation rate. Moreover, a comprehensive statistical analysis demonstrated that our generated peptides are diverse and have a low probability of being homologous to the training data. Interestingly, we found that the performance of many popular deep learning methods on the antimicrobial peptide prediction task can be improved by using Multi-CGAN to expand the data on the training set of the original task, indicating the high quality of our generated peptides and the robust ability of our method. In addition, we also investigated whether it is possible to directionally generate peptide sequences with specified properties by controlling the input noise sampling for our model.
Collapse
Affiliation(s)
- Haoqing Yu
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Ruheng Wang
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Jianbo Qiao
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| | - Leyi Wei
- School of Software, Shandong University, Jinan 250101, China
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China
| |
Collapse
|
4
|
Wei Q, Wang R, Jiang Y, Wei L, Sun Y, Geng J, Su R. ConPep: Prediction of peptide contact maps with pre-trained biological language model and multi-view feature extracting strategy. Comput Biol Med 2023; 167:107631. [PMID: 37948966 DOI: 10.1016/j.compbiomed.2023.107631] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The accurate prediction of peptide contact maps remains a challenging task due to the difficulty in obtaining the interactive information between residues on short sequences. To address this challenge, we propose ConPep, a deep learning framework designed for predicting the contact map of peptides based on sequences only. To sufficiently incorporate the sequential semantic information between residues in peptide sequences, we use a pre-trained biological language model and transfer prior knowledge from large scale databases. Additionally, to extract and integrate sequential local information and residue-based global correlations, our model incorporates Bidirectional Gated Recurrent Unit and attention mechanisms. They can obtain multi-view features and thus enhance the accuracy and robustness of our prediction. Comparative results on independent tests demonstrate that our proposed method significantly outperforms state-of-the-art methods even with short peptides. Notably, our method exhibits superior performance at the sequence level, suggesting the robust ability of our model compared with the multiple sequence alignment (MSA) analysis-based methods. We expect it can be meaningful research for facilitating the wide use of our method.
Collapse
Affiliation(s)
- Qingxin Wei
- School of Software, Shandong University, Jinan, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China
| | - Ruheng Wang
- School of Software, Shandong University, Jinan, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China
| | - Yi Jiang
- School of Software, Shandong University, Jinan, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China
| | - Leyi Wei
- School of Software, Shandong University, Jinan, China; Centre for Artificial Intelligence driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR, China
| | - Yu Sun
- Beidahuang Industry Group General Hospital, Harbin, China.
| | - Jie Geng
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China.
| | - Ran Su
- College of Intelligence and Computing, Tianjin University, Tianjin, China.
| |
Collapse
|
5
|
Zhang Y, Liu C, Liu M, Liu T, Lin H, Huang CB, Ning L. Attention is all you need: utilizing attention in AI-enabled drug discovery. Brief Bioinform 2023; 25:bbad467. [PMID: 38189543 PMCID: PMC10772984 DOI: 10.1093/bib/bbad467] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024] Open
Abstract
Recently, attention mechanism and derived models have gained significant traction in drug development due to their outstanding performance and interpretability in handling complex data structures. This review offers an in-depth exploration of the principles underlying attention-based models and their advantages in drug discovery. We further elaborate on their applications in various aspects of drug development, from molecular screening and target binding to property prediction and molecule generation. Finally, we discuss the current challenges faced in the application of attention mechanisms and Artificial Intelligence technologies, including data quality, model interpretability and computational resource constraints, along with future directions for research. Given the accelerating pace of technological advancement, we believe that attention-based models will have an increasingly prominent role in future drug discovery. We anticipate that these models will usher in revolutionary breakthroughs in the pharmaceutical domain, significantly accelerating the pace of drug development.
Collapse
Affiliation(s)
- Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiqi Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No.150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Mujiexin Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyuan Liu
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng-Bing Huang
- School of Computer Science and Technology, Aba Teachers University, Aba, China
| | - Lin Ning
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| |
Collapse
|