1
|
McNutt AT, Koes DR. Open-ComBind: harnessing unlabeled data for improved binding pose prediction. J Comput Aided Mol Des 2023; 38:3. [PMID: 38062207 PMCID: PMC10703974 DOI: 10.1007/s10822-023-00544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Determination of the bound pose of a ligand is a critical first step in many in silico drug discovery tasks. Molecular docking is the main tool for the prediction of non-covalent binding of a protein and ligand system. Molecular docking pipelines often only utilize the information of one ligand binding to the protein despite the commonly held hypothesis that different ligands share binding interactions when bound to the same receptor. Here we describe Open-ComBind, an easy-to-use, open-source version of the ComBind molecular docking pipeline that leverages information from multiple ligands without known bound structures to enhance pose selection. We first create distributions of feature similarities between ligand pose pairs, comparing near-native poses with all sampled docked poses. These distributions capture the likelihood of observing similar features, such as hydrogen bonds or hydrophobic contacts, in different pose configurations. These similarity distributions are then combined with a per-ligand docking score to enhance overall pose selection by 5% and 4.5% for high-affinity and congeneric series helper ligands, respectively. Open-ComBind reduces the average RMSD of ligands in our benchmark dataset by 9.0%. We provide Open-ComBind as an easy-to-use command line and Python API to increase pose prediction performance at www.github.com/drewnutt/open_combind .
Collapse
Affiliation(s)
- Andrew T McNutt
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Ryan Koes
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Azad I, Khan T, Ahmad N, Khan AR, Akhter Y. Updates on drug designing approach through computational strategies: a review. Future Sci OA 2023; 9:FSO862. [PMID: 37180609 PMCID: PMC10167725 DOI: 10.2144/fsoa-2022-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
The drug discovery and development (DDD) process in pursuit of novel drug candidates is a challenging procedure requiring lots of time and resources. Therefore, computer-aided drug design (CADD) methodologies are used extensively to promote proficiency in drug development in a systematic and time-effective manner. The point in reference is SARS-CoV-2 which has emerged as a global pandemic. In the absence of any confirmed drug moiety to treat the infection, the science fraternity adopted hit and trial methods to come up with a lead drug compound. This article is an overview of the virtual methodologies, which assist in finding novel hits and help in the progression of drug development in a short period with a specific medicinal solution.
Collapse
Affiliation(s)
- Iqbal Azad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Naseem Ahmad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, UP, 2260025, India
| |
Collapse
|
3
|
Vanegas JAG, Pacule HB, Capitão RM, Correia CRD, Terra WC, Campos VP, Oliveira DF. Methyl Esters of ( E)-Cinnamic Acid: Activity against the Plant-Parasitic Nematode Meloidogyne incognita and In Silico Interaction with Histone Deacetylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6624-6633. [PMID: 35622462 DOI: 10.1021/acs.jafc.1c08142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
(E)-Cinnamaldehyde is very active against Meloidogyne incognita but has low persistence in soil. To circumvent this problem, esters of cinnamic acid were evaluated as a substitute for (E)-cinnamaldehyde. The best results under assays with M. incognita second-stage juveniles (J2) were obtained for the methyl esters of (E)-p-fluoro- (13), (E)-p-chloro- (14), and (E)-p-bromocinnamic acid (15), which showed lethal concentrations to 50% (LC50) J2 of 168, 95, and 216 μg/mL, respectively. Under the same conditions, the LC50 values for the nematicides carbofuran and fluensulfone were 160 and 34 μg/mL, respectively. Substances 13-15 were also active against nematode eggs, which account for most of the M. incognita population in the field. According to an in silico study, substances 13-15 can act against the nematode through inhibition of histone deacetylase. Therefore, esters 13-15 and histone deacetylase are potentially useful for the rational design of new nematicides for the control of M. incognita.
Collapse
Affiliation(s)
- Javier A G Vanegas
- Laboratório de Produtos Naturais, Departamento de Química, Universidade Federal de Lavras, CEP 37200-900 Lavras, Minas Gerais, Brazil
| | - Horácio B Pacule
- Laboratório de Produtos Naturais, Departamento de Química, Universidade Federal de Lavras, CEP 37200-900 Lavras, Minas Gerais, Brazil
| | - Rebeca M Capitão
- Laboratório de Química Orgânica, Departamento de Química, Universidade Estadual de Campinas, CEP 13083-970, Campinas, São Paulo, Brazil
| | - Carlos R D Correia
- Laboratório de Química Orgânica, Departamento de Química, Universidade Estadual de Campinas, CEP 13083-970, Campinas, São Paulo, Brazil
| | - Willian C Terra
- Laboratório de Nematologia, Departamento de Fitopatologia, Universidade Federal de Lavras, CEP 37200-900, Lavras, Minas Gerais, Brazil
| | - Vicente P Campos
- Laboratório de Nematologia, Departamento de Fitopatologia, Universidade Federal de Lavras, CEP 37200-900, Lavras, Minas Gerais, Brazil
| | - Denilson F Oliveira
- Laboratório de Produtos Naturais, Departamento de Química, Universidade Federal de Lavras, CEP 37200-900 Lavras, Minas Gerais, Brazil
| |
Collapse
|
4
|
Yang X, Liu Y, Gan J, Xiao ZX, Cao Y. FitDock: protein-ligand docking by template fitting. Brief Bioinform 2022; 23:6548375. [PMID: 35289358 DOI: 10.1093/bib/bbac087] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/20/2022] [Indexed: 01/01/2023] Open
Abstract
Protein-ligand docking is an essential method in computer-aided drug design and structural bioinformatics. It can be used to identify active compounds and reveal molecular mechanisms of biological processes. A successful docking usually requires thorough conformation sampling and scoring, which are computationally expensive and difficult. Recent studies demonstrated that it can be beneficial to docking with the guidance of existing similar co-crystal structures. In this work, we developed a protein-ligand docking method, named FitDock, which fits initial conformation to the given template using a hierarchical multi-feature alignment approach, subsequently explores the possible conformations and finally outputs refined docking poses. In our comprehensive benchmark tests, FitDock showed 40%-60% improvement in terms of docking success rate and an order of magnitude faster over popular docking methods, if template structures exist (> 0.5 ligand similarity). FitDock has been implemented in a user-friendly program, which could serve as a convenient tool for drug design and molecular mechanism exploration. It is now freely available for academic users at http://cao.labshare.cn/fitdock/.
Collapse
Affiliation(s)
- Xiaocong Yang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Liu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianhong Gan
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
5
|
Srinivas R, Verma N, Kraka E, Larson EC. Deep Learning-Based Ligand Design Using Shared Latent Implicit Fingerprints from Collaborative Filtering. J Chem Inf Model 2021; 61:2159-2174. [PMID: 33899481 DOI: 10.1021/acs.jcim.0c01355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In their previous work, Srinivas et al. [ J. Cheminf. 2018, 10, 56] have shown that implicit fingerprints capture ligands and proteins in a shared latent space, typically for the purposes of virtual screening with collaborative filtering models applied on known bioactivity data. In this work, we extend these implicit fingerprints/descriptors using deep learning techniques to translate latent descriptors into discrete representations of molecules (SMILES), without explicitly optimizing for chemical properties. This allows the design of new compounds based upon the latent representation of nearby proteins, thereby encoding druglike properties including binding affinities to known proteins. The implicit descriptor method does not require any fingerprint similarity search, which makes the method free of any bias arising from the empirical nature of the fingerprint models [Srinivas, R.; J. Cheminf. 2018, 10, 56]. We evaluate the properties of the potentially novel drugs generated by our approach using physical properties of druglike molecules and chemical complexity. Additionally, we analyze the reliability of the biological activity of the new compounds generated using this method by employing models of protein-ligand interaction, which assists in assessing the potential binding affinity of the designed compounds. We find that the generated compounds exhibit properties of chemically feasible compounds and are predicted to be excellent binders to known proteins. Furthermore, we also analyze the diversity of compounds created using the Tanimoto distance and conclude that there is a wide diversity in the generated compounds.
Collapse
Affiliation(s)
- Raghuram Srinivas
- Department of Computer Science, Southern Methodist University, Dallas, Texas 75205, United States
| | - Niraj Verma
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75205, United States
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75205, United States
| | - Eric C Larson
- Department of Computer Science, Southern Methodist University, Dallas, Texas 75205, United States
| |
Collapse
|
6
|
Peach ML, Beedie SL, Chau CH, Collins MK, Markolovic S, Luo W, Tweedie D, Steinebach C, Greig NH, Gütschow M, Vargesson N, Nicklaus MC, Figg WD. Antiangiogenic Activity and in Silico Cereblon Binding Analysis of Novel Thalidomide Analogs. Molecules 2020; 25:E5683. [PMID: 33276504 PMCID: PMC7730988 DOI: 10.3390/molecules25235683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
Due to its antiangiogenic and anti-immunomodulatory activity, thalidomide continues to be of clinical interest despite its teratogenic actions, and efforts to synthesize safer, clinically active thalidomide analogs are continually underway. In this study, a cohort of 27 chemically diverse thalidomide analogs was evaluated for antiangiogenic activity in an ex vivo rat aorta ring assay. The protein cereblon has been identified as the target for thalidomide, and in silico pharmacophore analysis and molecular docking with a crystal structure of human cereblon were used to investigate the cereblon binding abilities of the thalidomide analogs. The results suggest that not all antiangiogenic thalidomide analogs can bind cereblon, and multiple targets and mechanisms of action may be involved.
Collapse
Affiliation(s)
- Megan L. Peach
- Basic Science Program, Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA;
| | - Shaunna L. Beedie
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.L.B.); (C.H.C.); (M.K.C.); (S.M.)
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Cindy H. Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.L.B.); (C.H.C.); (M.K.C.); (S.M.)
| | - Matthew K. Collins
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.L.B.); (C.H.C.); (M.K.C.); (S.M.)
| | - Suzana Markolovic
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.L.B.); (C.H.C.); (M.K.C.); (S.M.)
| | - Weiming Luo
- Drug Design & Development Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (W.L.); (D.T.); (N.H.G.)
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (W.L.); (D.T.); (N.H.G.)
| | - Christian Steinebach
- Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (C.S.); (M.G.)
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (W.L.); (D.T.); (N.H.G.)
| | - Michael Gütschow
- Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany; (C.S.); (M.G.)
| | - Neil Vargesson
- School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Marc C. Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21701, USA;
| | - William D. Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.L.B.); (C.H.C.); (M.K.C.); (S.M.)
| |
Collapse
|
7
|
Jaladanki CK, He Y, Zhao LN, Maurer-Stroh S, Loo LH, Song H, Fan H. Virtual screening of potentially endocrine-disrupting chemicals against nuclear receptors and its application to identify PPARγ-bound fatty acids. Arch Toxicol 2020; 95:355-374. [PMID: 32909075 PMCID: PMC7811525 DOI: 10.1007/s00204-020-02897-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Nuclear receptors (NRs) are key regulators of energy homeostasis, body development, and sexual reproduction. Xenobiotics binding to NRs may disrupt natural hormonal systems and induce undesired adverse effects in the body. However, many chemicals of concerns have limited or no experimental data on their potential or lack-of-potential endocrine-disrupting effects. Here, we propose a virtual screening method based on molecular docking for predicting potential endocrine-disrupting chemicals (EDCs) that bind to NRs. For 12 NRs, we systematically analyzed how multiple crystal structures can be used to distinguish actives and inactives found in previous high-throughput experiments. Our method is based on (i) consensus docking scores from multiple structures at a single functional state (agonist-bound or antagonist-bound), (ii) multiple functional states (agonist-bound and antagonist-bound), and (iii) multiple pockets (orthosteric site and alternative sites) of these NRs. We found that the consensus enrichment from multiple structures is better than or comparable to the best enrichment from a single structure. The discriminating power of this consensus strategy was further enhanced by a chemical similarity-weighted scoring scheme, yielding better or comparable enrichment for all studied NRs. Applying this optimized method, we screened 252 fatty acids against peroxisome proliferator-activated receptor gamma (PPARγ) and successfully identified 3 previously unknown fatty acids with Kd = 100-250 μM including two furan fatty acids: furannonanoic acid (FNA) and furanundecanoic acid (FUA), and one cyclopropane fatty acid: phytomonic acid (PTA). These results suggested that the proposed method can be used to rapidly screen and prioritize potential EDCs for further experimental evaluations.
Collapse
Affiliation(s)
- Chaitanya K Jaladanki
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore
- Toxicity Mode-of-Action Discovery (ToxMAD) Platform, Innovations in Food and Chemical Safety Programme, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Yang He
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Li Na Zhao
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore
- Toxicity Mode-of-Action Discovery (ToxMAD) Platform, Innovations in Food and Chemical Safety Programme, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Lit-Hsin Loo
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore
- Toxicity Mode-of-Action Discovery (ToxMAD) Platform, Innovations in Food and Chemical Safety Programme, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Haiwei Song
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore.
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore.
| |
Collapse
|
8
|
Macalino SJY, Billones JB, Organo VG, Carrillo MCO. In Silico Strategies in Tuberculosis Drug Discovery. Molecules 2020; 25:E665. [PMID: 32033144 PMCID: PMC7037728 DOI: 10.3390/molecules25030665] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) remains a serious threat to global public health, responsible for an estimated 1.5 million mortalities in 2018. While there are available therapeutics for this infection, slow-acting drugs, poor patient compliance, drug toxicity, and drug resistance require the discovery of novel TB drugs. Discovering new and more potent antibiotics that target novel TB protein targets is an attractive strategy towards controlling the global TB epidemic. In silico strategies can be applied at multiple stages of the drug discovery paradigm to expedite the identification of novel anti-TB therapeutics. In this paper, we discuss the current TB treatment, emergence of drug resistance, and the effective application of computational tools to the different stages of TB drug discovery when combined with traditional biochemical methods. We will also highlight the strengths and points of improvement in in silico TB drug discovery research, as well as possible future perspectives in this field.
Collapse
Affiliation(s)
- Stephani Joy Y. Macalino
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 0992, Philippines;
- OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; (V.G.O.); (M.C.O.C.)
| | - Junie B. Billones
- OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; (V.G.O.); (M.C.O.C.)
| | - Voltaire G. Organo
- OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; (V.G.O.); (M.C.O.C.)
| | - Maria Constancia O. Carrillo
- OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; (V.G.O.); (M.C.O.C.)
| |
Collapse
|
9
|
Kumar A, Zhang KYJ. Improving ligand 3D shape similarity-based pose prediction with a continuum solvent model. J Comput Aided Mol Des 2019; 33:1045-1055. [PMID: 31463704 DOI: 10.1007/s10822-019-00220-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
Abstract
In order to improve the pose prediction performance of docking methods, we have previously developed the pose prediction using shape similarity (PoPSS) method. It identifies a ligand conformation of the highest shape similarity with target protein crystal ligands. The identified ligand conformation is then placed into the target protein binding pocket and refined using side-chain repacking and Monte Carlo energy minimization. Subsequently, we have reported a modification to PoPSS, named as PoPSS-Lite, using a simple grid-based energy minimization for side-chain repacking and Tversky correlation coefficient as the similarity metric. This modification has improved the pose prediction performance and PoPSS-Lite was one of the top performers in D3R GC3. Here we report a further modification to PoPSS that utilizes a continuum solvent model to account for water mediated protein ligand interactions. In this approach, named as PoPSS-PB, the ligand conformation of the highest shape similarity with crystal ligands is refined along with the target protein binding site by incorporating the Poisson-Boltzmann electrostatics. The performance of PoPSS-PB along with PoPSS and PoPSS-Lite was prospectively evaluated in D3R GC4. PoPSS-PB not only demonstrated excellent performance with mean and median RMSDs of 1.20 and 1.13 Å but also achieved improved performance over PoPSS and PoPSS-Lite. Furthermore, the comparison with other D3R GC4 pose prediction submissions revealed admirable performance. Our results showed that the binding poses of ligands with unknown binding modes can be successfully predicted by utilizing ligand 3D shape similarity with known crystallographic ligands and that taking the solvation into consideration improves pose prediction.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
10
|
Ebejer JP, Finn PW, Wong WK, Deane CM, Morris GM. Ligity: A Non-Superpositional, Knowledge-Based Approach to Virtual Screening. J Chem Inf Model 2019; 59:2600-2616. [PMID: 31117509 PMCID: PMC7007185 DOI: 10.1021/acs.jcim.8b00779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present Ligity, a hybrid ligand-structure-based, non-superpositional method for virtual screening of large databases of small molecules. Ligity uses the relative spatial distribution of pharmacophoric interaction points (PIPs) derived from the conformations of small molecules. These are compared with the PIPs derived from key interaction features found in protein-ligand complexes and are used to prioritize likely binders. We investigated the effect of generating PIPs using the single lowest energy conformer versus an ensemble of conformers for each screened ligand, using different bin sizes for the distance between two features, utilizing triangular sets of pharmacophoric features (3-PIPs) versus chiral tetrahedral sets (4-PIPs), fusing data for targets with multiple protein-ligand complex structures, and applying different similarity measures. Ligity was benchmarked using the Directory of Useful Decoys-Enhanced (DUD-E). Optimal results were obtained using the tetrahedral PIPs derived from an ensemble of bound ligand conformers and a bin size of 1.5 Å, which are used as the default settings for Ligity. The high-throughput screening mode of Ligity, using only the lowest-energy conformer of each ligand, was used for benchmarking against the whole of the DUD-E, and a more resource-intensive, "information-rich" mode of Ligity, using a conformational ensemble of each ligand, were used for a representative subset of 10 targets. Against the full DUD-E database, mean area under the receiver operating characteristic curve (AUC) values ranged from 0.44 to 0.99, while for the representative subset they ranged from 0.61 to 0.86. Data fusion further improved Ligity's performance, with mean AUC values ranging from 0.64 to 0.95. Ligity is very efficient compared to a protein-ligand docking method such as AutoDock Vina: if the time taken for the precalculation of Ligity descriptors is included in the comparason, then Ligity is about 20 times faster than docking. A direct comparison of the virtual screening steps shows Ligity to be over 5000 times faster. Ligity highly ranks the lowest-energy conformers of DUD-E actives, in a statistically significant manner, behavior that is not observed for DUD-E decoys. Thus, our results suggest that active compounds tend to bind in relatively low-energy conformations compared to decoys. This may be because actives-and thus their lowest-energy conformations-have been optimized for conformational complementarity with their cognate binding sites.
Collapse
Affiliation(s)
- Jean-Paul Ebejer
- Centre for Molecular Medicine and Biobanking , University of Malta , Msida , MSD 2080 , Malta
| | - Paul W Finn
- Oxford Drug Design Limited, Oxford Centre for Innovation , New Road , Oxford OX1 1BY , U.K.,The School of Computing , University of Buckingham , Hunter Street , Buckingham , MK18 1EG , U.K
| | - Wing Ki Wong
- Oxford Protein Informatics Group, Department of Statistics , University of Oxford , 24-29 St. Giles' , Oxford , OX1 3LB , U.K
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics , University of Oxford , 24-29 St. Giles' , Oxford , OX1 3LB , U.K
| | - Garrett M Morris
- Oxford Protein Informatics Group, Department of Statistics , University of Oxford , 24-29 St. Giles' , Oxford , OX1 3LB , U.K
| |
Collapse
|
11
|
Huang SY. Comprehensive assessment of flexible-ligand docking algorithms: current effectiveness and challenges. Brief Bioinform 2019; 19:982-994. [PMID: 28334282 DOI: 10.1093/bib/bbx030] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein-ligand docking has been playing an important role in modern drug discovery. To model drug-target binding in real systems, a number of flexible-ligand docking algorithms with different sampling strategies and scoring methods have been subsequently developed over the past three decades, while rigid-ligand docking is still being used because of its compelling computational efficiency. Here, a comprehensive assessment has been conducted to investigate the effectiveness of flexible-ligand docking versus rigid-ligand docking for three representative docking algorithms (global optimization, incremental construction and multi-conformer docking) in virtual screening and pose prediction on the Directory of Useful Decoys. It was found that overall flexible-ligand docking did not achieve a statistically significant improvement in enrichments over rigid-ligand docking in virtual screening, but all docking programs significantly improved the success rates when considering ligand flexibility in pose prediction. The worse effectiveness of flexible-ligand docking in virtual screening than in pose prediction suggests that the challenges of current docking algorithms exist in ranking more than docking, although the use of flexible-ligand docking in virtual screening was justified by its better effectiveness for more flexible ligand in virtual screening. Challenges for scoring, including internal energy, charge polarization, entropy and flexibility, were investigated and discussed. An empirical way was also proposed to consider loss of ligand conformational entropy for virtual screening.
Collapse
Affiliation(s)
- Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| |
Collapse
|
12
|
Duarte Y, Márquez-Miranda V, Miossec MJ, González-Nilo F. Integration of target discovery, drug discovery and drug delivery: A review on computational strategies. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1554. [PMID: 30932351 DOI: 10.1002/wnan.1554] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/14/2018] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
Most of the computational tools involved in drug discovery developed during the 1980s were largely based on computational chemistry, quantitative structure-activity relationship (QSAR) and cheminformatics. Subsequently, the advent of genomics in the 2000s gave rise to a huge number of databases and computational tools developed to analyze large quantities of data, through bioinformatics, to obtain valuable information about the genomic regulation of different organisms. Target identification and validation is a long process during which evidence for and against a target is accumulated in the pursuit of developing new drugs. Finally, the drug delivery system appears as a novel approach to improve drug targeting and releasing into the cells, leading to new opportunities to improve drug efficiency and avoid potential secondary effects. In each area: target discovery, drug discovery and drug delivery, different computational strategies are being developed to accelerate the process of selection and discovery of new tools to be applied to different scientific fields. Research on these three topics is growing rapidly, but still requires a global view of this landscape to detect the most challenging bottleneck and how computational tools could be integrated in each topic. This review describes the current state of the art in computational strategies for target discovery, drug discovery and drug delivery and how these fields could be integrated. Finally, we will discuss about the current needs in these fields and how the continuous development of databases and computational tools will impact on the improvement of those areas. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Matthieu J Miossec
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Fernando González-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
13
|
Chen JJ, Schmucker LN, Visco DP. Identifying de-NEDDylation inhibitors: Virtual high-throughput screens targeting SENP8. Chem Biol Drug Des 2019; 93:590-604. [PMID: 30560590 DOI: 10.1111/cbdd.13457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 12/16/2022]
Abstract
Protein modification can have far-reaching effects. NEDDylation, a protein modification process with the protein NEDD8, stabilizes and modifies how the targeted protein interacts with other proteins. Its role in system regulation makes it a prime therapeutic target, and virtual high-throughput screening has already identified new NEDD8 inhibitors. SENP8 matures the NEDD8 proenzyme into the active form and regulates NEDDylation by removing NEDD8 from over-NEDDylated proteins. In this work, SENP8 inhibitor candidates were identified in two rounds of virtual high-throughput screening. Of the ten candidates identified in the first round of screening, four were active in validation experiments to yield an experimental hit rate of 40%. Of the five candidates identified in the second round of screening, one was active in validation experiments to yield an experimental hit rate of 20%. Results indicate virtual high-throughput screening improved hit rates over traditional high-throughput screening. The SENP8 inhibitor candidates can be used to interrogate the NEDDylation regulation mechanism.
Collapse
Affiliation(s)
| | - Lyndsey N Schmucker
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH
| | - Donald P Visco
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH
| |
Collapse
|
14
|
Chen JJ, Schmucker LN, Visco DP. Identifying new clotting factor XIa inhibitors in virtual high-throughput screens using PCA-GA-SVM models and signature. Biotechnol Prog 2018; 34:1553-1565. [PMID: 30009405 DOI: 10.1002/btpr.2693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/08/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022]
Abstract
Blood Clotting Factor XI is an important actor in the clotting mechanism: it activates downstream zymogen involved in the clotting process. It can be targeted for activation or inhibition depending on treatment goals to enhance or inhibit clotting. In terms of antithrombosis treatment, Factor XI has emerged as a promising target to focus on. In this work, an iterative virtual high-throughput screening pipeline was proposed that can supplement current efforts to find inhibitors. The first iteration identified 11 compounds to test with 3 active for a hit-rate of 27.3%. The second iteration of the pipeline identified another 11 compounds to test with 7 active for a hit-rate of 63.6%. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1553-1565, 2018.
Collapse
Affiliation(s)
- Jonathan J Chen
- Dept. of Biology, The University of Akron, 302 Buchtel Common, Akron, OH, 44325
| | - Lyndsey N Schmucker
- Dept. of Chemical and Biomolecular Engineering, The University of Akron, 302 Buchtel Common, Akron, OH, 44325
| | - Donald P Visco
- Dept. of Chemical and Biomolecular Engineering, The University of Akron, 302 Buchtel Common, Akron, OH, 44325
| |
Collapse
|
15
|
Kumar A, Zhang KYJ. Shape similarity guided pose prediction: lessons from D3R Grand Challenge 3. J Comput Aided Mol Des 2018; 33:47-59. [PMID: 30084081 DOI: 10.1007/s10822-018-0142-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
To extend the utility of ligand 3D shape similarity into pose prediction and virtual screening, we have previously developed CDVS and PoPSS methods. Both of them utilize ligand 3D shape similarity with the crystallographic ligands to improve pose prediction. While CDVS utilizes shape similarity to select suitable receptor structures for molecular docking, PoPSS places a ligand conformation of the highest shape similarity with crystal ligands into the target protein binding pocket which is then refined by side-chain repacking and Monte Carlo energy minimization. Analyses of PoPSS revealed some drawbacks in ligand conformation generation and the scoring scheme used. Moreover, as PoPSS does not sample the ligand conformation after placing it in the binding pocket, it relies solely on conformation generation methods to produce native like conformations. To address these limitations of PoPSS method, we report here a modified approach named as PoPSS-Lite, where side-chain repacking was replaced by a simple grid-based energy minimization. This modification also allowed the sampling of terminal functional groups while keeping the core scaffold fixed. Furthermore, shape similarity calculations were improved by increasing the number of ligand conformations and using a different similarity metric. The performance of PoPSS-Lite was prospectively evaluated in D3R GC3. Comparison of PoPSS-Lite demonstrated superior performance over PoPSS and CDVS with lower mean and median RMSDs. Furthermore, comparison with other D3R GC3 pose prediction submissions revealed top performance for PoPSS-Lite. Our D3R GC3 result extends our perspective that ligand 3D shape similarity with known crystallographic information can be successfully used to predict the binding pose of ligands with unknown binding modes. Our D3R GC3 results further highlight the necessity for improvement in conformer generation methods in order to improve shape similarity guided pose prediction.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
16
|
Kumar A, Zhang KYJ. Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery. Front Chem 2018; 6:315. [PMID: 30090808 PMCID: PMC6068280 DOI: 10.3389/fchem.2018.00315] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
Molecular similarity is a key concept in drug discovery. It is based on the assumption that structurally similar molecules frequently have similar properties. Assessment of similarity between small molecules has been highly effective in the discovery and development of various drugs. Especially, two-dimensional (2D) similarity approaches have been quite popular due to their simplicity, accuracy and efficiency. Recently, the focus has been shifted toward the development of methods involving the representation and comparison of three-dimensional (3D) conformation of small molecules. Among the 3D similarity methods, evaluation of shape similarity is now gaining attention for its application not only in virtual screening but also in molecular target prediction, drug repurposing and scaffold hopping. A wide range of methods have been developed to describe molecular shape and to determine the shape similarity between small molecules. The most widely used methods include atom distance-based methods, surface-based approaches such as spherical harmonics and 3D Zernike descriptors, atom-centered Gaussian overlay based representations. Several of these methods demonstrated excellent virtual screening performance not only retrospectively but also prospectively. In addition to methods assessing the similarity between small molecules, shape similarity approaches have been developed to compare shapes of protein structures and binding pockets. Additionally, shape comparisons between atomic models and 3D density maps allowed the fitting of atomic models into cryo-electron microscopy maps. This review aims to summarize the methodological advances in shape similarity assessment highlighting advantages, disadvantages and their application in drug discovery.
Collapse
Affiliation(s)
| | - Kam Y. J. Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
| |
Collapse
|
17
|
Chen JJ, Schmucker LN, Visco DP. Pharmaceutical Machine Learning: Virtual High-Throughput Screens Identifying Promising and Economical Small Molecule Inhibitors of Complement Factor C1s. Biomolecules 2018; 8:E24. [PMID: 29735903 PMCID: PMC6023033 DOI: 10.3390/biom8020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022] Open
Abstract
When excessively activated, C1 is insufficiently regulated, which results in tissue damage. Such tissue damage causes the complement system to become further activated to remove the resulting tissue damage, and a vicious cycle of activation/tissue damage occurs. Current Food and Drug Administration approved treatments include supplemental recombinant C1 inhibitor, but these are extremely costly and a more economical solution is desired. In our work, we have utilized an existing data set of 136 compounds that have been previously tested for activity against C1. Using these compounds and the activity data, we have created models using principal component analysis, genetic algorithm, and support vector machine approaches to characterize activity. The models were then utilized to virtually screen the 72 million compound PubChem repository. This first round of virtual high-throughput screening identified many economical and promising inhibitor candidates, a subset of which was tested to validate their biological activity. These results were used to retrain the models and rescreen PubChem in a second round vHTS. Hit rates for the first round vHTS were 57%, while hit rates for the second round vHTS were 50%. Additional structure⁻property analysis was performed on the active and inactive compounds to identify interesting scaffolds for further investigation.
Collapse
Affiliation(s)
- Jonathan J Chen
- Department of Biology, The University of Akron, 302 Buchtel Common, Akron, OH 44325, USA.
| | - Lyndsey N Schmucker
- Department of Chemical and Biomolecular Engineering, The University of Akron, 302 Buchtel Common, Akron, OH 44325, USA.
| | - Donald P Visco
- Department of Chemical and Biomolecular Engineering, The University of Akron, 302 Buchtel Common, Akron, OH 44325, USA.
| |
Collapse
|
18
|
Fu D, Meiler J. RosettaLigandEnsemble: A Small-Molecule Ensemble-Driven Docking Approach. ACS OMEGA 2018; 3:3655-3664. [PMID: 29732444 PMCID: PMC5928483 DOI: 10.1021/acsomega.7b02059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/20/2018] [Indexed: 05/27/2023]
Abstract
RosettaLigand is a protein-small-molecule (ligand) docking software capable of predicting binding poses and is used for virtual screening of medium-sized ligand libraries. Structurally similar small molecules are generally found to bind in the same pose to one binding pocket, despite some prominent exceptions. To make use of this information, we have developed RosettaLigandEnsemble (RLE). RLE docks a superimposed ensemble of congeneric ligands simultaneously. The program determines a well-scoring overall pose for this superimposed ensemble before independently optimizing individual protein-small-molecule interfaces. In a cross-docking benchmark of 89 protein-small-molecule co-crystal structures across 20 biological systems, we found that RLE improved sampling efficiency in 62 cases, with an average change of 18%. In addition, RLE generated more consistent docking results within a congeneric series and was capable of rescuing the unsuccessful docking of individual ligands, identifying a nativelike top-scoring model in 10 additional cases. The improvement in RLE is driven by a balance between having a sizable common chemical scaffold and meaningful modifications to distal groups. The new ensemble docking algorithm will work well in conjunction with medicinal chemistry structure-activity relationship (SAR) studies to more accurately recapitulate protein-ligand interfaces. We also tested whether optimizing the rank correlation of RLE-binding scores to SAR data in the refinement step helps the high-resolution positioning of the ligand. However, no significant improvement was observed.
Collapse
|
19
|
Fu DY, Meiler J. Predictive Power of Different Types of Experimental Restraints in Small Molecule Docking: A Review. J Chem Inf Model 2018; 58:225-233. [PMID: 29286651 DOI: 10.1021/acs.jcim.7b00418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Incorporating experimental restraints is a powerful method of increasing accuracy in computational protein small molecule docking simulations. Different algorithms integrate distinct forms of biochemical data during the docking and/or scoring stages. These so-called hybrid methods make use of receptor-based information such as nuclear magnetic resonance (NMR) restraints or small molecule-based information such as structure-activity relationships (SARs). A third class of methods directly interrogates contacts between the protein receptor and the small molecule. This work reviews the current state of using such restraints in docking simulations, evaluates their feasibility across broad systems, and identifies potential areas of algorithm development.
Collapse
Affiliation(s)
- Darwin Y Fu
- Department of Chemistry Vanderbilt University Nashville, Tennessee 37235, United States
| | - Jens Meiler
- Department of Chemistry Vanderbilt University Nashville, Tennessee 37235, United States
| |
Collapse
|
20
|
Identifying novel factor XIIa inhibitors with PCA-GA-SVM developed vHTS models. Eur J Med Chem 2017; 140:31-41. [DOI: 10.1016/j.ejmech.2017.08.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/18/2023]
|
21
|
Kadukova M, Grudinin S. Docking of small molecules to farnesoid X receptors using AutoDock Vina with the Convex-PL potential: lessons learned from D3R Grand Challenge 2. J Comput Aided Mol Des 2017; 32:151-162. [DOI: 10.1007/s10822-017-0062-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
|
22
|
Wang H, Liu H, Cai L, Wang C, Lv Q. Using the multi-objective optimization replica exchange Monte Carlo enhanced sampling method for protein-small molecule docking. BMC Bioinformatics 2017; 18:327. [PMID: 28693470 PMCID: PMC5504647 DOI: 10.1186/s12859-017-1733-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
Background In this study, we extended the replica exchange Monte Carlo (REMC) sampling method to protein–small molecule docking conformational prediction using RosettaLigand. In contrast to the traditional Monte Carlo (MC) and REMC sampling methods, these methods use multi-objective optimization Pareto front information to facilitate the selection of replicas for exchange. Results The Pareto front information generated to select lower energy conformations as representative conformation structure replicas can facilitate the convergence of the available conformational space, including available near-native structures. Furthermore, our approach directly provides min-min scenario Pareto optimal solutions, as well as a hybrid of the min-min and max-min scenario Pareto optimal solutions with lower energy conformations for use as structure templates in the REMC sampling method. These methods were validated based on a thorough analysis of a benchmark data set containing 16 benchmark test cases. An in-depth comparison between MC, REMC, multi-objective optimization-REMC (MO-REMC), and hybrid MO-REMC (HMO-REMC) sampling methods was performed to illustrate the differences between the four conformational search strategies. Conclusions Our findings demonstrate that the MO-REMC and HMO-REMC conformational sampling methods are powerful approaches for obtaining protein–small molecule docking conformational predictions based on the binding energy of complexes in RosettaLigand.
Collapse
Affiliation(s)
- Hongrui Wang
- School of Computer Science and Technology, Soochow University, 1 Shizi Street, Suzhou, 215006, People's Republic of China.
| | - Hongwei Liu
- School of Computer Science and Technology, Soochow University, 1 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Leixin Cai
- School of Computer Science and Technology, Soochow University, 1 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Caixia Wang
- School of Computer Science and Technology, Soochow University, 1 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Qiang Lv
- School of Computer Science and Technology, Soochow University, 1 Shizi Street, Suzhou, 215006, People's Republic of China.,Jiangsu Provincial Key Lab for Information Processing Technologies, 1 Shizi Street, Suzhou, 215006, People's Republic of China
| |
Collapse
|
23
|
Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015. J Comput Aided Mol Des 2017; 31:689-699. [PMID: 28668990 DOI: 10.1007/s10822-017-0038-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
Abstract
The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.
Collapse
|
24
|
Leelananda SP, Lindert S. Computational methods in drug discovery. Beilstein J Org Chem 2016; 12:2694-2718. [PMID: 28144341 PMCID: PMC5238551 DOI: 10.3762/bjoc.12.267] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein-ligand docking, pharmacophore modeling and QSAR techniques are reviewed.
Collapse
Affiliation(s)
- Sumudu P Leelananda
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
25
|
Subramanian G, Ramsundar B, Pande V, Denny RA. Computational Modeling of β-Secretase 1 (BACE-1) Inhibitors Using Ligand Based Approaches. J Chem Inf Model 2016; 56:1936-1949. [DOI: 10.1021/acs.jcim.6b00290] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Govindan Subramanian
- VMRD
Global Discovery, Zoetis, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | | | | | - Rajiah Aldrin Denny
- Worldwide
Medicinal Chemistry, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
26
|
Kumar A, Zhang KYJ. Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015. J Comput Aided Mol Des 2016; 30:685-693. [DOI: 10.1007/s10822-016-9931-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/25/2016] [Indexed: 01/23/2023]
|
27
|
A pose prediction approach based on ligand 3D shape similarity. J Comput Aided Mol Des 2016; 30:457-69. [DOI: 10.1007/s10822-016-9923-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/01/2016] [Indexed: 11/27/2022]
|
28
|
Carlson HA, Smith RD, Damm-Ganamet KL, Stuckey JA, Ahmed A, Convery MA, Somers DO, Kranz M, Elkins PA, Cui G, Peishoff CE, Lambert MH, Dunbar JB. CSAR 2014: A Benchmark Exercise Using Unpublished Data from Pharma. J Chem Inf Model 2016; 56:1063-77. [PMID: 27149958 DOI: 10.1021/acs.jcim.5b00523] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 2014 CSAR Benchmark Exercise was the last community-wide exercise that was conducted by the group at the University of Michigan, Ann Arbor. For this event, GlaxoSmithKline (GSK) donated unpublished crystal structures and affinity data from in-house projects. Three targets were used: tRNA (m1G37) methyltransferase (TrmD), Spleen Tyrosine Kinase (SYK), and Factor Xa (FXa). A particularly strong feature of the GSK data is its large size, which lends greater statistical significance to comparisons between different methods. In Phase 1 of the CSAR 2014 Exercise, participants were given several protein-ligand complexes and asked to identify the one near-native pose from among 200 decoys provided by CSAR. Though decoys were requested by the community, we found that they complicated our analysis. We could not discern whether poor predictions were failures of the chosen method or an incompatibility between the participant's method and the setup protocol we used. This problem is inherent to decoys, and we strongly advise against their use. In Phase 2, participants had to dock and rank/score a set of small molecules given only the SMILES strings of the ligands and a protein structure with a different ligand bound. Overall, docking was a success for most participants, much better in Phase 2 than in Phase 1. However, scoring was a greater challenge. No particular approach to docking and scoring had an edge, and successful methods included empirical, knowledge-based, machine-learning, shape-fitting, and even those with solvation and entropy terms. Several groups were successful in ranking TrmD and/or SYK, but ranking FXa ligands was intractable for all participants. Methods that were able to dock well across all submitted systems include MDock,1 Glide-XP,2 PLANTS,3 Wilma,4 Gold,5 SMINA,6 Glide-XP2/PELE,7 FlexX,8 and MedusaDock.9 In fact, the submission based on Glide-XP2/PELE7 cross-docked all ligands to many crystal structures, and it was particularly impressive to see success across an ensemble of protein structures for multiple targets. For scoring/ranking, submissions that showed statistically significant achievement include MDock1 using ITScore1,10 with a flexible-ligand term,11 SMINA6 using Autodock-Vina,12,13 FlexX8 using HYDE,14 and Glide-XP2 using XP DockScore2 with and without ROCS15 shape similarity.16 Of course, these results are for only three protein targets, and many more systems need to be investigated to truly identify which approaches are more successful than others. Furthermore, our exercise is not a competition.
Collapse
Affiliation(s)
- Heather A Carlson
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church St., Ann Arbor, Michigan 48109-1065, United States
| | - Richard D Smith
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church St., Ann Arbor, Michigan 48109-1065, United States
| | - Kelly L Damm-Ganamet
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church St., Ann Arbor, Michigan 48109-1065, United States
| | - Jeanne A Stuckey
- Center for Structural Biology, University of Michigan , 3358E Life Sciences Institute, 210 Washtenaw Ave., Ann Arbor, Michigan 48109-2216, United States
| | - Aqeel Ahmed
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church St., Ann Arbor, Michigan 48109-1065, United States
| | - Maire A Convery
- Computational and Structural Sciences, Medicines Research Centre, GlaxoSmithKline Research & Development , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Donald O Somers
- Computational and Structural Sciences, Medicines Research Centre, GlaxoSmithKline Research & Development , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Michael Kranz
- Computational and Structural Sciences, Medicines Research Centre, GlaxoSmithKline Research & Development , Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Patricia A Elkins
- Computational and Structural Sciences, GlaxoSmithKline Research & Development , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Guanglei Cui
- Computational and Structural Sciences, GlaxoSmithKline Research & Development , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Catherine E Peishoff
- Computational and Structural Sciences, GlaxoSmithKline Research & Development , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Millard H Lambert
- Computational and Structural Sciences, GlaxoSmithKline Research & Development , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - James B Dunbar
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church St., Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
29
|
Anighoro A, Bajorath J. Three-Dimensional Similarity in Molecular Docking: Prioritizing Ligand Poses on the Basis of Experimental Binding Modes. J Chem Inf Model 2016; 56:580-7. [DOI: 10.1021/acs.jcim.5b00745] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Andrew Anighoro
- Department of Life Science
Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal
Chemistry, Rheinische Friedrich-Wilhelms-Universität, Dahlmannstrasse 2, D-53113 Bonn, Germany
| | - Jürgen Bajorath
- Department of Life Science
Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal
Chemistry, Rheinische Friedrich-Wilhelms-Universität, Dahlmannstrasse 2, D-53113 Bonn, Germany
| |
Collapse
|