1
|
Georgiou K, Konstantinidi A, Hutterer J, Freudenberger K, Kolarov F, Lambrinidis G, Stylianakis I, Stampelou M, Gauglitz G, Kolocouris A. Accurate calculation of affinity changes to the close state of influenza A M2 transmembrane domain in response to subtle structural changes of adamantyl amines using free energy perturbation methods in different lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184258. [PMID: 37995846 DOI: 10.1016/j.bbamem.2023.184258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Experimental binding free energies of 27 adamantyl amines against the influenza M2(22-46) WT tetramer, in its closed form at pH 8, were measured by ITC in DPC micelles. The measured Kd's range is ~44 while the antiviral potencies (IC50) range is ~750 with a good correlation between binding free energies computed with Kd and IC50 values (r = 0.76). We explored with MD simulations (ff19sb, CHARMM36m) the binding profile of complexes with strong, moderate and weak binders embedded in DMPC, DPPC, POPC or a viral mimetic membrane and using different experimental starting structures of M2. To predict accurately differences in binding free energy in response to subtle changes in the structure of the ligands, we performed 18 alchemical perturbative single topology FEP/MD NPT simulations (OPLS2005) using the BAR estimator (Desmond software) and 20 dual topology calculations TI/MD NVT simulations (ff19sb) using the MBAR estimator (Amber software) for adamantyl amines in complex with M2(22-46) WT in DMPC, DPPC, POPC. We observed that both methods with all lipids show a very good correlation between the experimental and calculated relative binding free energies (r = 0.77-0.87, mue = 0.36-0.92 kcal mol-1) with the highest performance achieved with TI/MBAR and lowest performance with FEP/BAR in DMPC bilayers. When antiviral potencies are used instead of the Kd values for computing the experimental binding free energies we obtained also good performance with both FEP/BAR (r = 0.83, mue = 0.75 kcal mol-1) and TI/MBAR (r = 0.69, mue = 0.77 kcal mol-1).
Collapse
Affiliation(s)
- Kyriakos Georgiou
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Athina Konstantinidi
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Johanna Hutterer
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany
| | - Kathrin Freudenberger
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany
| | - Felix Kolarov
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany; Roche, Penzberg, Bavaria, Germany
| | - George Lambrinidis
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Ioannis Stylianakis
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Margarita Stampelou
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Günter Gauglitz
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece.
| |
Collapse
|
2
|
York DM. Modern Alchemical Free Energy Methods for Drug Discovery Explained. ACS PHYSICAL CHEMISTRY AU 2023; 3:478-491. [PMID: 38034038 PMCID: PMC10683484 DOI: 10.1021/acsphyschemau.3c00033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 12/02/2023]
Abstract
This Perspective provides a contextual explanation of the current state-of-the-art alchemical free energy methods and their role in drug discovery as well as highlights select emerging technologies. The narrative attempts to answer basic questions about what goes on "under the hood" in free energy simulations and provide general guidelines for how to run simulations and analyze the results. It is the hope that this work will provide a valuable introduction to students and scientists in the field.
Collapse
Affiliation(s)
- Darrin M. York
- Laboratory for Biomolecular
Simulation Research, Institute for Quantitative Biomedicine, and Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
3
|
Papadourakis M, Sinenka H, Matricon P, Hénin J, Brannigan G, Pérez-Benito L, Pande V, van Vlijmen H, de Graaf C, Deflorian F, Tresadern G, Cecchini M, Cournia Z. Alchemical Free Energy Calculations on Membrane-Associated Proteins. J Chem Theory Comput 2023; 19:7437-7458. [PMID: 37902715 PMCID: PMC11017255 DOI: 10.1021/acs.jctc.3c00365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 10/31/2023]
Abstract
Membrane proteins have diverse functions within cells and are well-established drug targets. The advances in membrane protein structural biology have revealed drug and lipid binding sites on membrane proteins, while computational methods such as molecular simulations can resolve the thermodynamic basis of these interactions. Particularly, alchemical free energy calculations have shown promise in the calculation of reliable and reproducible binding free energies of protein-ligand and protein-lipid complexes in membrane-associated systems. In this review, we present an overview of representative alchemical free energy studies on G-protein-coupled receptors, ion channels, transporters as well as protein-lipid interactions, with emphasis on best practices and critical aspects of running these simulations. Additionally, we analyze challenges and successes when running alchemical free energy calculations on membrane-associated proteins. Finally, we highlight the value of alchemical free energy calculations calculations in drug discovery and their applicability in the pharmaceutical industry.
Collapse
Affiliation(s)
- Michail Papadourakis
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Hryhory Sinenka
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Pierre Matricon
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Jérôme Hénin
- Laboratoire
de Biochimie Théorique UPR 9080, CNRS and Université Paris Cité, 75005 Paris, France
| | - Grace Brannigan
- Center
for Computational and Integrative Biology, Rutgers University−Camden, Camden, New Jersey 08103, United States of America
- Department
of Physics, Rutgers University−Camden, Camden, New Jersey 08102, United States
of America
| | - Laura Pérez-Benito
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Vineet Pande
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Herman van Vlijmen
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Chris de Graaf
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Francesca Deflorian
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Gary Tresadern
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Marco Cecchini
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Zoe Cournia
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
4
|
Stampolaki Μ, Hoffmann A, Tekwani K, Georgiou K, Tzitzoglaki C, Ma C, Becker S, Schmerer P, Döring K, Stylianakis I, Turcu AL, Wang J, Vázquez S, Andreas LB, Schmidtke M, Kolocouris A. A Study of the Activity of Adamantyl Amines against Mutant Influenza A M2 Channels Identified a Polycyclic Cage Amine Triple Blocker, Explored by Molecular Dynamics Simulations and Solid-State NMR. ChemMedChem 2023; 18:e202300182. [PMID: 37377066 DOI: 10.1002/cmdc.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
We compared the anti-influenza potencies of 57 adamantyl amines and analogs against influenza A virus with serine-31 M2 proton channel, usually termed as WT M2 channel, which is amantadine sensitive. We also tested a subset of these compounds against viruses with the amantadine-resistant L26F, V27A, A30T, G34E M2 mutant channels. Four compounds inhibited WT M2 virus in vitro with mid-nanomolar potency, with 27 compounds showing sub-micromolar to low micromolar potency. Several compounds inhibited L26F M2 virus in vitro with sub-micromolar to low micromolar potency, but only three compounds blocked L26F M2-mediated proton current as determined by electrophysiology (EP). One compound was found to be a triple blocker of WT, L26F, V27A M2 channels by EP assays, but did not inhibit V27A M2 virus in vitro, and one compound inhibited WT, L26F, V27A M2 in vitro without blocking V27A M2 channel. One compound blocked only L26F M2 channel by EP, but did not inhibit virus replication. The triple blocker compound is as long as rimantadine, but could bind and block V27A M2 channel due to its larger girth as revealed by molecular dynamics simulations, while MAS NMR informed on the interaction of the compound with M2(18-60) WT or L26F or V27A.
Collapse
Affiliation(s)
- Μarianna Stampolaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Anja Hoffmann
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Kumar Tekwani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Kyriakos Georgiou
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Christina Tzitzoglaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Chunlong Ma
- Department of Medicinal Chemistry, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Patrick Schmerer
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Kristin Döring
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Ioannis Stylianakis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Andreea L Turcu
- Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Jun Wang
- Department of Medicinal Chemistry, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Santiago Vázquez
- Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Michaela Schmidtke
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Antonios Kolocouris
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| |
Collapse
|
5
|
Nguyen TH, La VNT, Burke K, Minh DDL. Bayesian regression and model selection for isothermal titration calorimetry with enantiomeric mixtures. PLoS One 2022; 17:e0273656. [PMID: 36173969 PMCID: PMC9521810 DOI: 10.1371/journal.pone.0273656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 08/13/2022] [Indexed: 11/26/2022] Open
Abstract
Bayesian regression is performed to infer parameters of thermodynamic binding models from isothermal titration calorimetry measurements in which the titrant is an enantiomeric mixture. For some measurements the posterior density is multimodal, indicating that additional data with a different protocol are required to uniquely determine the parameters. Models of increasing complexity-two-component binding, racemic mixture, and enantiomeric mixture-are compared using model selection criteria. To precisely estimate one of these criteria, the Bayes factor, a variation of bridge sampling is developed.
Collapse
Affiliation(s)
- Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Van N. T. La
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Kyle Burke
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, United States of America
| | - David D. L. Minh
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, United States of America
| |
Collapse
|
6
|
Vakali V, Papadourakis M, Georgiou N, Zoupanou N, Diamantis DA, Javornik U, Papakyriakopoulou P, Plavec J, Valsami G, Tzakos AG, Tzeli D, Cournia Z, Mauromoustakos T. Comparative Interaction Studies of Quercetin with 2-Hydroxyl-propyl-β-cyclodextrin and 2,6-Methylated-β-cyclodextrin. Molecules 2022; 27:5490. [PMID: 36080258 PMCID: PMC9458201 DOI: 10.3390/molecules27175490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Quercetin (QUE) is a well-known natural product that can exert beneficial properties on human health. However, due to its low solubility its bioavailability is limited. In the present study, we examine whether its formulation with two cyclodextrins (CDs) may enhance its pharmacological profile. Comparative interaction studies of quercetin with 2-hydroxyl-propyl-β-cyclodextrin (2HP-β-CD) and 2,6-methylated cyclodextrin (2,6Me-β-CD) were performed using NMR spectroscopy, DFT calculations, and in silico molecular dynamics (MD) simulations. Using T1 relaxation experiments and 2D DOSY it was illustrated that both cyclodextrin vehicles can host quercetin. Quantum mechanical calculations showed the formation of hydrogen bonds between QUE with 2HP-β-CD and 2,6Μe-β-CD. Six hydrogen bonds are formed ranging between 2 to 2.8 Å with 2HP-β-CD and four hydrogen bonds within 2.8 Å with 2,6Μe-β-CD. Calculations of absolute binding free energies show that quercetin binds favorably to both 2,6Me-β-CD and 2HP-β-CD. MM/GBSA results show equally favorable binding of quercetin in the two CDs. Fluorescence spectroscopy shows moderate binding of quercetin in 2HP-β-CD (520 M-1) and 2,6Me-β-CD (770 M-1). Thus, we propose that both formulations (2HP-β-CD:quercetin, 2,6Me-β-CD:quercetin) could be further explored and exploited as small molecule carriers in biological studies.
Collapse
Affiliation(s)
- Vasiliki Vakali
- Organic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopollis Zografou, 11571 Athens, Greece
| | - Michail Papadourakis
- Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Nikitas Georgiou
- Organic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopollis Zografou, 11571 Athens, Greece
| | - Nikoletta Zoupanou
- Organic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopollis Zografou, 11571 Athens, Greece
| | - Dimitrios A. Diamantis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Uroš Javornik
- Slovenian NMR Centre, National Institute of Chemistry, SI-1001 Ljubljana, Slovenia
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, SI-1001 Ljubljana, Slovenia
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Zoe Cournia
- Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Thomas Mauromoustakos
- Organic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopollis Zografou, 11571 Athens, Greece
| |
Collapse
|
7
|
Berger A, Knak T, Kiffe-Delf AL, Mudrovcic K, Singh V, Njoroge M, Burckhardt BB, Gopalswamy M, Lungerich B, Ackermann L, Gohlke H, Chibale K, Kalscheuer R, Kurz T. Total Synthesis of the Antimycobacterial Natural Product Chlorflavonin and Analogs via a Late-Stage Ruthenium(II)-Catalyzed ortho-C(sp2)-H-Hydroxylation. Pharmaceuticals (Basel) 2022; 15:ph15080984. [PMID: 36015133 PMCID: PMC9415896 DOI: 10.3390/ph15080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
The continuous, worldwide spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) endanger the World Health Organization’s (WHO) goal to end the global TB pandemic by the year 2035. During the past 50 years, very few new drugs have been approved by medical agencies to treat drug-resistant TB. Therefore, the development of novel antimycobacterial drug candidates to combat the threat of drug-resistant TB is urgent. In this work, we developed and optimized a total synthesis of the antimycobacterial natural flavonoid chlorflavonin by selective ruthenium(II)-catalyzed ortho-C(sp2)-H-hydroxylation of a substituted 3′-methoxyflavonoid skeleton. We extended our methodology to synthesize a small compound library of 14 structural analogs. The new analogs were tested for their antimycobacterial in vitro activity against Mycobacterium tuberculosis (Mtb) and their cytotoxicity against various human cell lines. The most promising new analog bromflavonin exhibited improved antimycobacterial in vitro activity against the virulent H37Rv strain of Mtb (Minimal Inhibitory Concentrations (MIC90) = 0.78 μm). In addition, we determined the chemical and metabolic stability as well as the pKa values of chlorflavonin and bromflavonin. Furthermore, we established a quantitative structure–activity relationship model using a thermodynamic integration approach. Our computations may be used for suggesting further structural changes to develop improved derivatives.
Collapse
Affiliation(s)
- Alexander Berger
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany or
| | - Talea Knak
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany or
| | - Anna-Lene Kiffe-Delf
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Korana Mudrovcic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany or
| | - Vinayak Singh
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
| | - Bjoern B. Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Mohanraj Gopalswamy
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany or
| | - Beate Lungerich
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany or
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany or
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Kelly Chibale
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany or
- Correspondence:
| |
Collapse
|
8
|
Aledavood E, Selmi B, Estarellas C, Masetti M, Luque FJ. From Acid Activation Mechanisms of Proton Conduction to Design of Inhibitors of the M2 Proton Channel of Influenza A Virus. Front Mol Biosci 2022; 8:796229. [PMID: 35096969 PMCID: PMC8795881 DOI: 10.3389/fmolb.2021.796229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/24/2021] [Indexed: 11/26/2022] Open
Abstract
With an estimated 1 billion people affected across the globe, influenza is one of the most serious health concerns worldwide. Therapeutic treatments have encompassed a number of key functional viral proteins, mainly focused on the M2 proton channel and neuraminidase. This review highlights the efforts spent in targeting the M2 proton channel, which mediates the proton transport toward the interior of the viral particle as a preliminary step leading to the release of the fusion peptide in hemagglutinin and the fusion of the viral and endosomal membranes. Besides the structural and mechanistic aspects of the M2 proton channel, attention is paid to the challenges posed by the development of efficient small molecule inhibitors and the evolution toward novel ligands and scaffolds motivated by the emergence of resistant strains.
Collapse
Affiliation(s)
- Elnaz Aledavood
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Beatrice Selmi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Carolina Estarellas
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| | - F. Javier Luque
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| |
Collapse
|
9
|
Kolokouris D, Kalenderoglou IE, Kolocouris A. Inside and Out of the Pore: Comparing Interactions and Molecular Dynamics of Influenza A M2 Viroporin Complexes in Standard Lipid Bilayers. J Chem Inf Model 2021; 61:5550-5568. [PMID: 34714655 DOI: 10.1021/acs.jcim.1c00264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ion channels located at viral envelopes (viroporins) have a critical function for the replication of infectious viruses and are important drug targets. Over the last decade, the number and duration of molecular dynamics (MD) simulations of the influenza A M2 ion channel owing to the increased computational efficiency. Here, we aimed to define the system setup and simulation conditions for the correct description of the protein-pore and the protein-lipid interactions for influenza A M2 in comparison with experimental data. We performed numerous MD simulations of the influenza A M2 protein in complex with adamantane blockers in standard lipid bilayers using OPLS2005 and CHARMM36 (C36) force fields. We explored the effect of varying the M2 construct (M2(22-46) and M2(22-62)), the lipid buffer size and type (stiffer DMPC or softer POPC with or without 20% cholesterol), the simulation time, the H37 protonation site (Nδ or Νε), the conformational state of the W41 channel gate, and M2's cholesterol binding sites (BSs). We report that the 200 ns MD with M2(22-62) (having Nε Η37) in the 20 Å lipid buffer with the C36 force field accurately describe: (a) the M2 pore structure and interactions inside the pore, that is, adamantane channel blocker location, water clathrate structure, and water or chloride anion blockage/passage from the M2 pore in the presence of a channel blocker and (b) interactions between M2 and the membrane environment as reflected by the calculation of the M2 bundle tilt, folding of amphipathic helices, and cholesterol BSs. Strikingly, we also observed that the C36 1 μs MD simulations using M2(22-62) embedded in a 20 Å POPC:cholesterol (5:1) scrambled membrane produced frequent interactions with cholesterol, which when combined with computational kinetic analysis, revealed the experimentally observed BSs of cholesterol and suggested three similarly long-interacting positions in the top leaflet that have previously not been observed experimentally. These findings promise to be useful for other viroporin systems.
Collapse
Affiliation(s)
- Dimitrios Kolokouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Iris E Kalenderoglou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| |
Collapse
|
10
|
Zavitsanou S, Tsengenes A, Papadourakis M, Amendola G, Chatzigoulas A, Dellis D, Cosconati S, Cournia Z. FEPrepare: A Web-Based Tool for Automating the Setup of Relative Binding Free Energy Calculations. J Chem Inf Model 2021; 61:4131-4138. [PMID: 34519200 DOI: 10.1021/acs.jcim.1c00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Relative binding free energy calculations in drug design are becoming a useful tool in facilitating lead binding affinity optimization in a cost- and time-efficient manner. However, they have been limited by technical challenges such as the manual creation of large numbers of input files to set up, run, and analyze free energy simulations. In this Application Note, we describe FEPrepare, a novel web-based tool, which automates the setup procedure for relative binding FEP calculations for the dual-topology scheme of NAMD, one of the major MD engines, using OPLS-AA force field topology and parameter files. FEPrepare provides the user with all necessary files needed to run a FEP/MD simulation with NAMD. FEPrepare can be accessed and used at https://feprepare.vi-seem.eu/.
Collapse
Affiliation(s)
- Stamatia Zavitsanou
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece.,Information Technologies in Medicine and Biology, Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Alexandros Tsengenes
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Michail Papadourakis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Giorgio Amendola
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alexios Chatzigoulas
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece.,Information Technologies in Medicine and Biology, Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dimitris Dellis
- Greek Research and Technology Network, S.A., 7 Kifissias Avenue, 11523 Athens, Greece
| | - Sandro Cosconati
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
11
|
Thomaston JL, Samways ML, Konstantinidi A, Ma C, Hu Y, Bruce Macdonald HE, Wang J, Essex JW, DeGrado WF, Kolocouris A. Rimantadine Binds to and Inhibits the Influenza A M2 Proton Channel without Enantiomeric Specificity. Biochemistry 2021; 60:10.1021/acs.biochem.1c00437. [PMID: 34342217 PMCID: PMC8810914 DOI: 10.1021/acs.biochem.1c00437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The influenza A M2 wild-type (WT) proton channel is the target of the anti-influenza drug rimantadine. Rimantadine has two enantiomers, though most investigations into drug binding and inhibition have used a racemic mixture. Solid-state NMR experiments using the full length-M2 WT have shown significant spectral differences that were interpreted to indicate tighter binding for (R)- vs (S)-rimantadine. However, it was unclear if this correlates with a functional difference in drug binding and inhibition. Using X-ray crystallography, we have determined that both (R)- and (S)-rimantadine bind to the M2 WT pore with slight differences in the hydration of each enantiomer. However, this does not result in a difference in potency or binding kinetics, as shown by similar values for kon, koff, and Kd in electrophysiological assays and for EC50 values in cellular assays. We concluded that the slight differences in hydration for the (R)- and (S)-rimantadine enantiomers are not relevant to drug binding or channel inhibition. To further explore the effect of the hydration of the M2 pore on binding affinity, the water structure was evaluated by grand canonical ensemble molecular dynamics simulations as a function of the chemical potential of the water. Initially, the two layers of ordered water molecules between the bound drug and the channel's gating His37 residues mask the drug's chirality. As the chemical potential becomes more unfavorable, the drug translocates down to the lower water layer, and the interaction becomes more sensitive to chirality. These studies suggest the feasibility of displacing the upper water layer and specifically recognizing the lower water layers in novel drugs.
Collapse
Affiliation(s)
- Jessica L Thomaston
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, University of California, San Francisco, California 94158, United States
| | - Marley L Samways
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Athina Konstantinidi
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Hannah E Bruce Macdonald
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jonathan W Essex
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - William F DeGrado
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, University of California, San Francisco, California 94158, United States
| | - Antonios Kolocouris
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
12
|
Watkins LC, DeGrado WF, Voth GA. Influenza A M2 Inhibitor Binding Understood through Mechanisms of Excess Proton Stabilization and Channel Dynamics. J Am Chem Soc 2020; 142:17425-17433. [PMID: 32933245 PMCID: PMC7564090 DOI: 10.1021/jacs.0c06419] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Prevalent resistance to inhibitors
that target the influenza A
M2 proton channel has necessitated a continued drug design effort,
supported by a sustained study of the mechanism of channel function
and inhibition. Recent high-resolution X-ray crystal structures present
the first opportunity to see how the adamantyl amine class of inhibitors
bind to M2 and disrupt and interact with the channel’s water
network, providing insight into the critical properties that enable
their effective inhibition in wild-type M2. In this work, we examine
the hypothesis that these drugs act primarily as mechanism-based inhibitors
by comparing hydrated excess proton stabilization during proton transport
in M2 with the interactions revealed in the crystal structures, using
the Multiscale Reactive Molecular Dynamics (MS-RMD) methodology. MS-RMD,
unlike classical molecular dynamics, models the hydrated proton (hydronium-like
cation) as a dynamic excess charge defect and allows bonds to break
and form, capturing the intricate interactions between the hydrated
excess proton, protein atoms, and water. Through this, we show that
the ammonium group of the inhibitors is effectively positioned to
take advantage of the channel’s natural ability to stabilize
an excess protonic charge and act as a hydronium mimic. Additionally,
we show that the channel is especially stable in the drug binding
region, highlighting the importance of this property for binding the
adamantane group. Finally, we characterize an additional hinge point
near Val27, which dynamically responds to charge and inhibitor binding.
Altogether, this work further illuminates a dynamic understanding
of the mechanism of drug inhibition in M2, grounded in the fundamental
properties that enable the channel to transport and stabilize excess
protons, with critical implications for future drug design efforts.
Collapse
Affiliation(s)
- Laura C Watkins
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
Konstantinidi A, Chountoulesi M, Naziris N, Sartori B, Amenitsch H, Mali G, Čendak T, Plakantonaki M, Triantafyllakou I, Tselios T, Demetzos C, Busath DD, Mavromoustakos T, Kolocouris A. The boundary lipid around DMPC-spanning influenza A M2 transmembrane domain channels: Its structure and potential for drug accommodation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183156. [PMID: 31846647 DOI: 10.1016/j.bbamem.2019.183156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
We have investigated the perturbation of influenza A M2TM in DMPC bilayers. We have shown that (a) DSC and SAXS detect changes in membrane organization caused by small changes (micromolar) in M2TM or aminoadamantane concentration and aminoadamantane structure, by comparison of amantadine and spiro[pyrrolidine-2,2'-adamantane] (AK13), (b) that WAXS and MD can suggest details of ligand topology. DSC and SAXS show that at a low M2TM micromolar concentration in DPMC bilayers, two lipid domains are observed, which likely correspond to M2TM boundary lipids and bulk-like lipids. At higher M2TM concentrations, one domain only is identified, which constitutes essentially all of the lipid molecules behaving as boundary lipids. According to SAXS, WAXS, and DSC in the absence of M2TM, both aminoadamantane drugs exert a similar perturbing effect on the bilayer at low concentrations. At the same concentrations of the drug when M2TM is present, amantadine and, to a lesser extent, AK13 cause, according to WAXS, a significant disordering of chain-stacking, which also leads to the formation of two lipid domains. This effect is likely due, according to MD simulations, to the preference of the more lipophilic AK13 to locate closer to the lateral surfaces of M2TM when compared to amantadine, which forms stronger ionic interactions with phosphate groups. The preference of AK13 to concentrate inside the lipid bilayer close to the exterior of the hydrophobic M2TM helices may contribute to its higher binding affinity compared to amantadine.
Collapse
Affiliation(s)
- Athina Konstantinidi
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Barbara Sartori
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, A-8010 Graz, Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, A-8010 Graz, Austria
| | - Gregor Mali
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana SI-1001, Slovenia
| | - Tomaž Čendak
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana SI-1001, Slovenia
| | - Maria Plakantonaki
- Department of Chemistry, School of Natural Sciences, University of Patras, Rion, Patras 26500, Greece
| | - Iro Triantafyllakou
- Department of Chemistry, School of Natural Sciences, University of Patras, Rion, Patras 26500, Greece
| | - Theodore Tselios
- Department of Chemistry, School of Natural Sciences, University of Patras, Rion, Patras 26500, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - David D Busath
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Thomas Mavromoustakos
- Section of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece.
| | - Antonios Kolocouris
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece.
| |
Collapse
|
14
|
Musharrafieh R, Lagarias PI, Ma C, Tan GS, Kolocouris A, Wang J. The L46P mutant confers a novel allosteric mechanism of resistance toward the influenza A virus M2 S31N proton channel blockers. Mol Pharmacol 2019; 96:148-157. [PMID: 31175183 DOI: 10.1124/mol.119.116640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
The Food and Drug Administration-approved influenza A antiviral amantadine inhibits the wild-type (WT) AM2 channel but not the S31N mutant predominantly found in circulating strains. In this study, serial viral passages were applied to select resistance against a newly developed isoxazole-conjugated adamantane inhibitor that targets the AM2 S31N channel. This led to the identification of the novel drug-resistant mutation L46P located outside the drug-binding site, which suggests an allosteric resistance mechanism. Intriguingly, when the L46P mutant was introduced to AM2 WT, the channel remained sensitive toward amantadine inhibition. To elucidate the molecular mechanism, molecular dynamics simulations and binding free energy molecular mechanics-generalized born surface area (MM-GBSA) calculations were performed on WT and mutant channels. It was found that the L46P mutation caused a conformational change in the N terminus of transmembrane residues 22-31 that ultimately broadened the drug-binding site of AM2 S31N inhibitor 4, which spans residues 26-34, but not of AM2 WT inhibitor amantadine, which spans residues 31-34. The MM-GBSA calculations showed stronger binding stability for 4 in complex with AM2 S31N compared with 4 in complex with AM2 S31N/L46P, and equal binding free energies of amantadine in complex with AM2 WT and AM2 L46P. Overall, these results demonstrate a unique allosteric resistance mechanism toward AM2 S31N channel blockers, and the L46P mutant represents the first experimentally confirmed drug-resistant AM2 mutant that is located outside of the pore where drug binds. SIGNIFICANCE STATEMENT: AM2 S31N is a high-profile antiviral drug target, as more than 95% of currently circulating influenza A viruses carry this mutation. Understanding the mechanism of drug resistance is critical in designing the next generation of AM2 S31N channel blockers. Using a previously developed AM2 S31N channel blocker as a chemical probe, this study was the first to identify a novel resistant mutant, L46P. The L46P mutant is located outside of the drug-binding site. Molecular dynamics simulations showed that L46P causes a dilation of drug-binding site between residues 22 and 31, which affects the binding of AM2 S31N channel blockers, but not the AM2 WT inhibitor amantadine.
Collapse
Affiliation(s)
- Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy (R.M., C.M., J.W.) and Department of Chemistry and Biochemistry (R.M.), University of Arizona, Tucson, Arizona; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Greece (P.I.L., A.K.); J. Craig Venter Institute, La Jolla, California (G.S.T.); and Department of Medicine, University of California, San Diego, La Jolla, California (G.S.T.)
| | - Panagiotis I Lagarias
- Department of Pharmacology and Toxicology, College of Pharmacy (R.M., C.M., J.W.) and Department of Chemistry and Biochemistry (R.M.), University of Arizona, Tucson, Arizona; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Greece (P.I.L., A.K.); J. Craig Venter Institute, La Jolla, California (G.S.T.); and Department of Medicine, University of California, San Diego, La Jolla, California (G.S.T.)
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy (R.M., C.M., J.W.) and Department of Chemistry and Biochemistry (R.M.), University of Arizona, Tucson, Arizona; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Greece (P.I.L., A.K.); J. Craig Venter Institute, La Jolla, California (G.S.T.); and Department of Medicine, University of California, San Diego, La Jolla, California (G.S.T.)
| | - Gene S Tan
- Department of Pharmacology and Toxicology, College of Pharmacy (R.M., C.M., J.W.) and Department of Chemistry and Biochemistry (R.M.), University of Arizona, Tucson, Arizona; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Greece (P.I.L., A.K.); J. Craig Venter Institute, La Jolla, California (G.S.T.); and Department of Medicine, University of California, San Diego, La Jolla, California (G.S.T.)
| | - Antonios Kolocouris
- Department of Pharmacology and Toxicology, College of Pharmacy (R.M., C.M., J.W.) and Department of Chemistry and Biochemistry (R.M.), University of Arizona, Tucson, Arizona; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Greece (P.I.L., A.K.); J. Craig Venter Institute, La Jolla, California (G.S.T.); and Department of Medicine, University of California, San Diego, La Jolla, California (G.S.T.)
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy (R.M., C.M., J.W.) and Department of Chemistry and Biochemistry (R.M.), University of Arizona, Tucson, Arizona; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Greece (P.I.L., A.K.); J. Craig Venter Institute, La Jolla, California (G.S.T.); and Department of Medicine, University of California, San Diego, La Jolla, California (G.S.T.)
| |
Collapse
|
15
|
Konstantinidi A, Naziris N, Chountoulesi M, Kiriakidi S, Sartori B, Kolokouris D, Amentisch H, Mali G, Ntountaniotis D, Demetzos C, Mavromoustakos T, Kolocouris A. Comparative Perturbation Effects Exerted by the Influenza A M2 WT Protein Inhibitors Amantadine and the Spiro[pyrrolidine-2,2'-adamantane] Variant AK13 to Membrane Bilayers Studied Using Biophysical Experiments and Molecular Dynamics Simulations. J Phys Chem B 2018; 122:9877-9895. [PMID: 30285441 DOI: 10.1021/acs.jpcb.8b07071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aminoadamantane drugs are lipophilic amines that block the membrane-embedded influenza A M2 WT (wild type) ion channel protein. The comparative effects of amantadine ( Amt) and its synthetic spiro[pyrrolidine-2,2'-adamantane] (AK13) analogue in dimyristoylphosphatidylcholine (DMPC) bilayers were studied using a combination of experimental biophysical methods, differential scanning calorimetry (DSC), X-ray diffraction, solid-state NMR (ssNMR) spectroscopy, and molecular dynamics (MD) simulations. All three experimental methods pointed out that the two analogues perturbed drastically the DMPC bilayers with AK13 to be more effective at high concentrations. AK13 was tolerated in lipid bilayers at very high concentrations, while Amt was crystallized. This is an important consideration in the formulations of drugs as it designates a limitation of Amt incorporation. MD simulations verify provided details about the strong interactions of the drugs in the interface region between phosphoglycerol backbone and lipophilic segments. The two drugs form hydrogen bonding with both water and sn-2 carbonyls in their amine form or water and phosphate oxygens in their ammonium form. Such localization of the drugs explains the DMPC bilayers reorientation and their strong perturbing effect evidenced by all biophysical methodologies applied.
Collapse
Affiliation(s)
| | | | | | | | - Barbara Sartori
- Institute of Inorganic Chemistry , Graz University of Technology , Stremayrgasse 9/5 , A-8010 Graz , Austria
| | | | - Heinz Amentisch
- Institute of Inorganic Chemistry , Graz University of Technology , Stremayrgasse 9/5 , A-8010 Graz , Austria
| | - Gregor Mali
- Department of Inorganic Chemistry and Technology , National Institute of Chemistry , Ljubljana SI-1001 , Slovenia
| | | | | | | | | |
Collapse
|
16
|
Santner P, Martins JMDS, Laursen JS, Behrendt L, Riber L, Olsen CA, Arkin IT, Winther JR, Willemoës M, Lindorff-Larsen K. A Robust Proton Flux (pHlux) Assay for Studying the Function and Inhibition of the Influenza A M2 Proton Channel. Biochemistry 2018; 57:5949-5956. [PMID: 30230312 DOI: 10.1021/acs.biochem.8b00721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The M2 protein is an important target for drugs in the fight against the influenza virus. Because of the emergence of resistance against antivirals directed toward the M2 proton channel, the search for new drugs against resistant M2 variants is of high importance. Robust and sensitive assays for testing potential drug compounds on different M2 variants are valuable tools in this search for new inhibitors. In this work, we describe a fluorescence sensor-based assay, which we termed "pHlux", that measures proton conduction through M2 when synthesized from an expression vector in Escherichia coli. The assay was compared to a previously established bacterial potassium ion transport complementation assay, and the results were compared to simulations obtained from analysis of a computational model of M2 and its interaction with inhibitor molecules. The inhibition of M2 was measured for five different inhibitors, including Rimantadine, Amantadine, and spiro type compounds, and the drug resistance of the M2 mutant variants (swine flu, V27A, and S31N) was confirmed. We demonstrate that the pHlux assay is robust and highly sensitive and shows potential for high-throughput screening.
Collapse
Affiliation(s)
- Paul Santner
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - João Miguel da Silva Martins
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Jonas S Laursen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Lars Behrendt
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Leise Riber
- Department of Biology, Section for Microbiology , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Christian A Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark.,Center for Biopharmaceuticals, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Isaiah T Arkin
- Department of Biological Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat-Ram , Jerusalem 91904 , Israel
| | - Jakob R Winther
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Martin Willemoës
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, Section for Biomolecular Sciences, Linderstrøm-Lang Centre for Protein Science , University of Copenhagen , Ole Maaloes Vej 5 , 2200 Copenhagen N, Denmark
| |
Collapse
|
17
|
Lagarias P, Vrontaki E, Lambrinidis G, Stamatis D, Convertino M, Ortore G, Mavromoustakos T, Klotz KN, Kolocouris A. Discovery of Novel Adenosine Receptor Antagonists through a Combined Structure- and Ligand-Based Approach Followed by Molecular Dynamics Investigation of Ligand Binding Mode. J Chem Inf Model 2018; 58:794-815. [PMID: 29485875 DOI: 10.1021/acs.jcim.7b00455] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An intense effort is made by pharmaceutical and academic research laboratories to identify and develop selective antagonists for each adenosine receptor (AR) subtype as potential clinical candidates for "soft" treatment of various diseases. Crystal structures of subtypes A2A and A1ARs offer exciting opportunities for structure-based drug design. In the first part of the present work, Maybridge HitFinder library of 14400 compounds was utilized to apply a combination of structure-based against the crystal structure of A2AAR and ligand-based methodologies. The docking poses were rescored by CHARMM energy minimization and calculation of the desolvation energy using Poisson-Boltzmann equation electrostatics. Out of the eight selected and tested compounds, five were found positive hits (63% success). Although the project was initially focused on targeting A2AAR, the identified antagonists exhibited low micromolar or micromolar affinity against A2A/A3, ARs, or A3AR, respectively. Based on these results, 19 compounds characterized by novel chemotypes were purchased and tested. Sixteen of them were identified as AR antagonists with affinity toward combinations of the AR family isoforms (A2A/A3, A1/A3, A1/A2A/A3, and A3). The second part of this work involves the performance of hundreds of molecular dynamics (MD) simulations of complexes between the ARs and a total of 27 ligands to resolve the binding interactions of the active compounds, which were not achieved by docking calculations alone. This computational work allowed the prediction of stable and unstable complexes which agree with the experimental results of potent and inactive compounds, respectively. Of particular interest is that the 2-amino-thiophene-3-carboxamides, 3-acylamino-5-aryl-thiophene-2-carboxamides, and carbonyloxycarboximidamide derivatives were found to be selective and possess a micromolar to low micromolar affinity for the A3 receptor.
Collapse
Affiliation(s)
- Panagiotis Lagarias
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences , National and Kapodistrian University of Athens , Panepistimiopolis-Zografou , 15771 Athens , Greece
| | - Eleni Vrontaki
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences , National and Kapodistrian University of Athens , Panepistimiopolis-Zografou , 15771 Athens , Greece
| | - George Lambrinidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences , National and Kapodistrian University of Athens , Panepistimiopolis-Zografou , 15771 Athens , Greece
| | - Dimitrios Stamatis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences , National and Kapodistrian University of Athens , Panepistimiopolis-Zografou , 15771 Athens , Greece
| | - Marino Convertino
- Department of Biochemistry & Biophysics , University of North Carolina at Chapel Hill , 120 Mason Farm Road , Chapel Hill , North Carolina 27599 , United States
| | - Gabriella Ortore
- Department of Pharmacy , University of Pisa , 56126 Pisa , Italy
| | - Thomas Mavromoustakos
- Division of Organic Chemistry, Department of Chemistry, School of Science , National and Kapodistrian University of Athens , Panepistimiopolis-Zografou , 15771 Athens , Greece
| | - Karl-Norbert Klotz
- Institute of Pharmacology and Toxicology , University of Würzburg Versbacher Str. 9 , 97078 Würzburg , Germany
| | - Antonios Kolocouris
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences , National and Kapodistrian University of Athens , Panepistimiopolis-Zografou , 15771 Athens , Greece
| |
Collapse
|
18
|
Drakopoulos A, Tzitzoglaki C, McGuire K, Hoffmann A, Konstantinidi A, Kolokouris D, Ma C, Freudenberger K, Hutterer J, Gauglitz G, Wang J, Schmidtke M, Busath DD, Kolocouris A. Unraveling the Binding, Proton Blockage, and Inhibition of Influenza M2 WT and S31N by Rimantadine Variants. ACS Med Chem Lett 2018. [PMID: 29541360 DOI: 10.1021/acsmedchemlett.7b00458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recently, the binding kinetics of a ligand-target interaction, such as the residence time of a small molecule on its protein target, are seen as increasingly important for drug efficacy. Here, we investigate these concepts to explain binding and proton blockage of rimantadine variants bearing progressively larger alkyl groups to influenza A virus M2 wild type (WT) and M2 S31N protein proton channel. We showed that resistance of M2 S31N to rimantadine analogues compared to M2 WT resulted from their higher koff rates compared to the kon rates according to electrophysiology (EP) measurements. This is due to the fact that, in M2 S31N, the loss of the V27 pocket for the adamantyl cage resulted in low residence time inside the M2 pore. Both rimantadine enantiomers have similar channel blockage and binding kon and koff against M2 WT. To compare the potency between the rimantadine variants against M2, we applied approaches using different mimicry of M2, i.e., isothermal titration calorimetry and molecular dynamics simulation, EP, and antiviral assays. It was also shown that a small change in an amino acid at site 28 of M2 WT, which does not line the pore, seriously affects M2 WT blockage kinetics.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Greece
| | - Christina Tzitzoglaki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Greece
| | - Kelly McGuire
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Anja Hoffmann
- Department of Medicinal Microbiology, Section Experimental Virology, Jena University Hospital, Hans Knoell Str. 2, D-07745 Jena, Germany
| | - Athina Konstantinidi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Greece
| | - Dimitrios Kolokouris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Greece
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Kathrin Freudenberger
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität Tübingen, 72074 Tübingen, Germany
| | - Johanna Hutterer
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität Tübingen, 72074 Tübingen, Germany
| | - Günter Gauglitz
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität Tübingen, 72074 Tübingen, Germany
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Michaela Schmidtke
- Department of Medicinal Microbiology, Section Experimental Virology, Jena University Hospital, Hans Knoell Str. 2, D-07745 Jena, Germany
| | - David D. Busath
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Antonios Kolocouris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Greece
| |
Collapse
|
19
|
Cournia Z, Allen B, Sherman W. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations. J Chem Inf Model 2017; 57:2911-2937. [PMID: 29243483 DOI: 10.1021/acs.jcim.7b00564] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accurate in silico prediction of protein-ligand binding affinities has been a primary objective of structure-based drug design for decades due to the putative value it would bring to the drug discovery process. However, computational methods have historically failed to deliver value in real-world drug discovery applications due to a variety of scientific, technical, and practical challenges. Recently, a family of approaches commonly referred to as relative binding free energy (RBFE) calculations, which rely on physics-based molecular simulations and statistical mechanics, have shown promise in reliably generating accurate predictions in the context of drug discovery projects. This advance arises from accumulating developments in the underlying scientific methods (decades of research on force fields and sampling algorithms) coupled with vast increases in computational resources (graphics processing units and cloud infrastructures). Mounting evidence from retrospective validation studies, blind challenge predictions, and prospective applications suggests that RBFE simulations can now predict the affinity differences for congeneric ligands with sufficient accuracy and throughput to deliver considerable value in hit-to-lead and lead optimization efforts. Here, we present an overview of current RBFE implementations, highlighting recent advances and remaining challenges, along with examples that emphasize practical considerations for obtaining reliable RBFE results. We focus specifically on relative binding free energies because the calculations are less computationally intensive than absolute binding free energy (ABFE) calculations and map directly onto the hit-to-lead and lead optimization processes, where the prediction of relative binding energies between a reference molecule and new ideas (virtual molecules) can be used to prioritize molecules for synthesis. We describe the critical aspects of running RBFE calculations, from both theoretical and applied perspectives, using a combination of retrospective literature examples and prospective studies from drug discovery projects. This work is intended to provide a contemporary overview of the scientific, technical, and practical issues associated with running relative binding free energy simulations, with a focus on real-world drug discovery applications. We offer guidelines for improving the accuracy of RBFE simulations, especially for challenging cases, and emphasize unresolved issues that could be improved by further research in the field.
Collapse
Affiliation(s)
- Zoe Cournia
- Biomedical Research Foundation, Academy of Athens , 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Bryce Allen
- Silicon Therapeutics , 300 A Street, Boston, Massachusetts 02210, United States
| | - Woody Sherman
- Silicon Therapeutics , 300 A Street, Boston, Massachusetts 02210, United States
| |
Collapse
|
20
|
Schindler C, Rippmann F, Kuhn D. Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP. J Comput Aided Mol Des 2017; 32:265-272. [PMID: 28900792 DOI: 10.1007/s10822-017-0064-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/08/2017] [Indexed: 01/06/2023]
Abstract
Physics-based free energy simulations have increasingly become an important tool for predicting binding affinity and the recent introduction of automated protocols has also paved the way towards a more widespread use in the pharmaceutical industry. The D3R 2016 Grand Challenge 2 provided an opportunity to blindly test the commercial free energy calculation protocol FEP+ and assess its performance relative to other affinity prediction methods. The present D3R free energy prediction challenge was built around two experimental data sets involving inhibitors of farnesoid X receptor (FXR) which is a promising anticancer drug target. The FXR binding site is predominantly hydrophobic with few conserved interaction motifs and strong induced fit effects making it a challenging target for molecular modeling and drug design. For both data sets, we achieved reasonable prediction accuracy (RMSD ≈ 1.4 kcal/mol, rank 3-4 according to RMSD out of 20 submissions) comparable to that of state-of-the-art methods in the field. Our D3R results boosted our confidence in the method and strengthen our desire to expand its applications in future in-house drug design projects.
Collapse
Affiliation(s)
| | | | - Daniel Kuhn
- Computational Chemistry and Biology, Merck KGaA, Darmstadt, Germany
| |
Collapse
|
21
|
Williams-Noonan BJ, Yuriev E, Chalmers DK. Free Energy Methods in Drug Design: Prospects of “Alchemical Perturbation” in Medicinal Chemistry. J Med Chem 2017; 61:638-649. [DOI: 10.1021/acs.jmedchem.7b00681] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Billy J. Williams-Noonan
- Medicinal Chemistry, Monash
Institute of Pharmaceutical Sciences, Monash University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Elizabeth Yuriev
- Medicinal Chemistry, Monash
Institute of Pharmaceutical Sciences, Monash University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - David K. Chalmers
- Medicinal Chemistry, Monash
Institute of Pharmaceutical Sciences, Monash University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
22
|
Tzitzoglaki C, Wright A, Freudenberger K, Hoffmann A, Tietjen I, Stylianakis I, Kolarov F, Fedida D, Schmidtke M, Gauglitz G, Cross TA, Kolocouris A. Binding and Proton Blockage by Amantadine Variants of the Influenza M2WT and M2S31N Explained. J Med Chem 2017; 60:1716-1733. [DOI: 10.1021/acs.jmedchem.6b01115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Christina Tzitzoglaki
- Section
of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens 157 71, Greece
| | - Anna Wright
- Institute
of Molecular Biophysics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States
| | - Kathrin Freudenberger
- Institut
für Physikalische und Theoretische Chemie, Eberhard-Karls Universität, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - Anja Hoffmann
- Department
of Virology and Antiviral Therapy, Jena University Hospital, Hans Knoell Strasse 2, D-07745 Jena, Germany
| | - Ian Tietjen
- Department
of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ioannis Stylianakis
- Section
of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens 157 71, Greece
| | - Felix Kolarov
- Institut
für Physikalische und Theoretische Chemie, Eberhard-Karls Universität, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - David Fedida
- Department
of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michaela Schmidtke
- Department
of Virology and Antiviral Therapy, Jena University Hospital, Hans Knoell Strasse 2, D-07745 Jena, Germany
| | - Günter Gauglitz
- Institut
für Physikalische und Theoretische Chemie, Eberhard-Karls Universität, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
| | - Timothy A. Cross
- Institute
of Molecular Biophysics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States
- Department
of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Antonios Kolocouris
- Section
of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens 157 71, Greece
| |
Collapse
|
23
|
Drakopoulos A, Tzitzoglaki C, Ma C, Freudenberger K, Hoffmann A, Hu Y, Gauglitz G, Schmidtke M, Wang J, Kolocouris A. Affinity of Rimantadine Enantiomers against Influenza A/M2 Protein Revisited. ACS Med Chem Lett 2017; 8:145-150. [PMID: 28217261 DOI: 10.1021/acsmedchemlett.6b00311] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/13/2017] [Indexed: 12/28/2022] Open
Abstract
Recent findings from solid state NMR (ssNMR) studies suggested that the (R)-enantiomer of rimantadine binds to the full M2 protein with higher affinity than the (S)-enantiomer. Intrigued by these findings, we applied functional assays, such as antiviral assay and electrophysiology (EP), to evaluate the binding affinity of rimantadine enantiomers to the M2 protein channel. Unexpectedly, no significant difference was found between the two enantiomers. Our experimental data based on the full M2 protein function were further supported by alchemical free energy calculations and isothermal titration calorimetry (ITC) allowing an evaluation of the binding affinity of rimantadine enantiomers to the M2TM pore. Both enantiomers have similar channel blockage, affinity, and antiviral potency.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Tzitzoglaki
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Chulong Ma
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Kathrin Freudenberger
- Institut
für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany
| | - Anja Hoffmann
- Department
of Virology and Antiviral Therapy, Jena University Hospital, Hans Knoell Str. 2, D-07745 Jena, Germany
| | - Yanmei Hu
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Günter Gauglitz
- Institut
für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany
| | - Michaela Schmidtke
- Department
of Virology and Antiviral Therapy, Jena University Hospital, Hans Knoell Str. 2, D-07745 Jena, Germany
| | - Jun Wang
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Antonios Kolocouris
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
24
|
Gianti E, Delemotte L, Klein ML, Carnevale V. On the role of water density fluctuations in the inhibition of a proton channel. Proc Natl Acad Sci U S A 2016; 113:E8359-E8368. [PMID: 27956641 PMCID: PMC5206518 DOI: 10.1073/pnas.1609964114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hv1 is a transmembrane four-helix bundle that transports protons in a voltage-controlled manner. Its crucial role in many pathological conditions, including cancer and ischemic brain damage, makes Hv1 a promising drug target. Starting from the recently solved crystal structure of Hv1, we used structural modeling and molecular dynamics simulations to characterize the channel's most relevant conformations along the activation cycle. We then performed computational docking of known Hv1 inhibitors, 2-guanidinobenzimidazole (2GBI) and analogs. Although salt-bridge patterns and electrostatic potential profiles are well-defined and distinctive features of activated versus nonactivated states, the water distribution along the channel lumen is dynamic and reflects a conformational heterogeneity inherent to each state. In fact, pore waters assemble into intermittent hydrogen-bonded clusters that are replaced by the inhibitor moieties upon ligand binding. The entropic gain resulting from releasing these conformationally restrained waters to the bulk solvent is likely a major contributor to the binding free energy. Accordingly, we mapped the water density fluctuations inside the pore of the channel and identified the regions of maximum fluctuation within putative binding sites. Two sites appear as outstanding: One is the already known binding pocket of 2GBI, which is accessible to ligands from the intracellular side; the other is a site located at the exit of the proton permeation pathway. Our analysis of the waters confined in the hydrophobic cavities of Hv1 suggests a general strategy for drug discovery that can be applied to any ion channel.
Collapse
Affiliation(s)
- Eleonora Gianti
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122
| | - Lucie Delemotte
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Michael L Klein
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122;
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122;
| |
Collapse
|
25
|
Llabrés S, Juárez-Jiménez J, Masetti M, Leiva R, Vázquez S, Gazzarrini S, Moroni A, Cavalli A, Luque FJ. Mechanism of the Pseudoirreversible Binding of Amantadine to the M2 Proton Channel. J Am Chem Soc 2016; 138:15345-15358. [DOI: 10.1021/jacs.6b07096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Salomé Llabrés
- Department
of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and
Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Avgda. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - Jordi Juárez-Jiménez
- Department
of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and
Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Avgda. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - Matteo Masetti
- Department
of Pharmacy and Biotecnology (FaBit), Alma Mater Studiorum, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Rosana Leiva
- Laboratori
de Química Farmacèutica (Unitat Associada al CSIC),
Facultat de Farmàcia i Ciències de l’Alimentació,
and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan
XXIII 27-31, 08028 Barcelona, Spain
| | - Santiago Vázquez
- Laboratori
de Química Farmacèutica (Unitat Associada al CSIC),
Facultat de Farmàcia i Ciències de l’Alimentació,
and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan
XXIII 27-31, 08028 Barcelona, Spain
| | - Sabrina Gazzarrini
- Department
of Biosciences and National Research Council (CNR) Biophysics Institute
(IBF), University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Anna Moroni
- Department
of Biosciences and National Research Council (CNR) Biophysics Institute
(IBF), University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Andrea Cavalli
- Department
of Pharmacy and Biotecnology (FaBit), Alma Mater Studiorum, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
- CompuNet, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genova,Italy
| | - F. Javier Luque
- Department
of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and
Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Avgda. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|