1
|
Calderón JC, Plut E, Keller M, Cabrele C, Reiser O, Gervasio FL, Clark T. Extended Metadynamics Protocol for Binding/Unbinding Free Energies of Peptide Ligands to Class A G-Protein-Coupled Receptors. J Chem Inf Model 2024; 64:205-218. [PMID: 38150388 DOI: 10.1021/acs.jcim.3c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A metadynamics protocol is presented to characterize the binding and unbinding of peptide ligands to class A G-protein-coupled receptors (GPCRs). The protocol expands on the one previously presented for binding and unbinding small-molecule ligands to class A GPCRs and accounts for the more demanding nature of the peptide binding-unbinding process. It applies to almost all class A GPCRs. Exemplary simulations are described for subtypes Y1R, Y2R, and Y4R of the neuropeptide Y receptor family, vasopressin binding to the vasopressin V2 receptor (V2R), and oxytocin binding to the oxytocin receptor (OTR). Binding free energies and the positions of alternative binding sites are presented and, where possible, compared with the experiment.
Collapse
Affiliation(s)
- Jacqueline C Calderón
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg, Naegelsbachstr. 25, Erlangen 91052, Germany
| | - Eva Plut
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93040, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg D-93040, Germany
| | - Chiara Cabrele
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93040, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93040, Germany
| | | | - Timothy Clark
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg, Naegelsbachstr. 25, Erlangen 91052, Germany
| |
Collapse
|
2
|
Wei X, Diarra S, Douchez A, Cunico Dallagnol JC, Hébert TE, Chatenet D, Lubell WD. Urotensin II Receptor Modulation with 1,3,4-Benzotriazepin-2-one Tetrapeptide Mimics. J Med Chem 2023; 66:14241-14262. [PMID: 37800680 DOI: 10.1021/acs.jmedchem.3c01307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Urotensin II receptor (UT) modulators that differentiate the effects of the endogenous cyclic peptide ligands urotensin II (UII) and urotensin II-related peptide (URP) offer potential for dissecting their respective biological roles in disease etiology. Selective modulators of hUII and URP activities were obtained using 1,3,4-benzotriazepin-2-one mimics of a purported bioactive γ-turn conformation about the Bip-Lys-Tyr tripeptide sequence of urocontrin ([Bip4]URP). Considering an active β-turn conformer about the shared Phe-Trp-Lys-Tyr sequence of UII and URP, 8-substituted 1,3,4-benzotriazepin-2-ones were designed to mimic the Phe-Bip-Lys-Tyr tetrapeptide sequence of urocontrin, synthesized, and examined for biological activity. Subtle 5- and 8-position modifications resulted in biased signaling and selective modulation of hUII- or URP-induced vasoconstriction. For example, p-hydroxyphenethyl analogs 17b-d were strong Gα13 and βarr1 activators devoid of Gαq-mediated signaling. Tertiary amides 15d and 17d negatively modulated hUII-induced vasoconstriction without affecting URP-mediated responses. Benzotriazepinone carboxamides proved to be exceptional tools for elucidating the pharmacological complexity of UT.
Collapse
Affiliation(s)
- Xiaozheng Wei
- Département de Chimie, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, Québec, Canada H2V 0B3
| | - Sitan Diarra
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Ville de Laval, Québec, Canada H7V 1B7
| | - Antoine Douchez
- Département de Chimie, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, Québec, Canada H2V 0B3
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Ville de Laval, Québec, Canada H7V 1B7
| | - Juliana C Cunico Dallagnol
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade SirWilliam Osler, Montréal, Québec, Canada H3G 1Y6
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Ville de Laval, Québec, Canada H7V 1B7
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade SirWilliam Osler, Montréal, Québec, Canada H3G 1Y6
| | - David Chatenet
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Ville de Laval, Québec, Canada H7V 1B7
| | - William D Lubell
- Département de Chimie, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, Québec, Canada H2V 0B3
| |
Collapse
|
3
|
Wei X, Douchez A, Lubell WD. 1,3,5,8-Tetrasubstituted 1,3,4-Benzotriazepin-2-one Scaffolds for β-Turn Mimicry without Stereogenic Carbon Centers: Synthesis and Conformational Analysis. J Org Chem 2023; 88:4633-4648. [PMID: 36930829 DOI: 10.1021/acs.joc.3c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Topological mimicry of peptide β-turn secondary structures has been investigated using a 1,3,5,8-tetrasubstituted 1,3,4-benzotriazepin-2-one scaffold. Approaches were conceived for the synthesis of tetrasubstituted benzotriazepinones from 4-acetyl-3-aminobenzoate based on aza-amino acid chemistry and different orthogonal protection strategies. Installation of an 8-position carboxylate on the aromatic ring enabled a diverse array of substituents to be introduced for mimicry of the i-position residue. Benzotriazepin-2-one crystallization and X-ray analysis demonstrated that in spite the absence of a stereogenic carbon center, the scaffold could serve as type I and I' β-turn mimics, because pyramidalization of the N3-nitrogen in the benzotriazepin-2-one provides potential for adoptive chirality. 1,3,5,8-Tetrasubstituted 1,3,4-benzotriazepin-2-one scaffolds offer interesting potential for the cost-effective synthesis of nonpeptide β-turn surrogates for peptide mimicry in various recognition events.
Collapse
Affiliation(s)
- Xiaozheng Wei
- Département de Chimie, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Antoine Douchez
- Département de Chimie, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
4
|
Wong MTY, Kelm S, Liu X, Taylor RD, Baker T, Essex JW. Higher Affinity Antibodies Bind With Lower Hydration and Flexibility in Large Scale Simulations. Front Immunol 2022; 13:884110. [PMID: 35707541 PMCID: PMC9190259 DOI: 10.3389/fimmu.2022.884110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
We have carried out a long-timescale simulation study on crystal structures of nine antibody-antigen pairs, in antigen-bound and antibody-only forms, using molecular dynamics with enhanced sampling and an explicit water model to explore interface conformation and hydration. By combining atomic level simulation and replica exchange to enable full protein flexibility, we find significant numbers of bridging water molecules at the antibody-antigen interface. Additionally, a higher proportion of interactions excluding bulk waters and a lower degree of antigen bound CDR conformational sampling are correlated with higher antibody affinity. The CDR sampling supports enthalpically driven antibody binding, as opposed to entropically driven, in that the difference between antigen bound and unbound conformations do not correlate with affinity. We thus propose that interactions with waters and CDR sampling are aspects of the interface that may moderate antibody-antigen binding, and that explicit hydration and CDR flexibility should be considered to improve antibody affinity prediction and computational design workflows.
Collapse
Affiliation(s)
- Mabel T. Y. Wong
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | - Jonathan W. Essex
- School of Chemistry, University of Southampton, Southampton, United Kingdom
- *Correspondence: Jonathan W. Essex,
| |
Collapse
|
5
|
Reid LM, Guzzetti I, Svensson T, Carlsson AC, Su W, Leek T, von Sydow L, Czechtizky W, Miljak M, Verma C, De Maria L, Essex JW. How well does molecular simulation reproduce environment-specific conformations of the intrinsically disordered peptides PLP, TP2 and ONEG? Chem Sci 2022; 13:1957-1971. [PMID: 35308859 PMCID: PMC8848758 DOI: 10.1039/d1sc03496k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/03/2022] [Indexed: 12/31/2022] Open
Abstract
Understanding the conformational ensembles of intrinsically disordered proteins and peptides (IDPs) in their various biological environments is essential for understanding their mechanisms and functional roles in the proteome, leading to a greater knowledge of, and potential treatments for, a broad range of diseases. To determine whether molecular simulation is able to generate accurate conformational ensembles of IDPs, we explore the structural landscape of the PLP peptide (an intrinsically disordered region of the proteolipid membrane protein) in aqueous and membrane-mimicking solvents, using replica exchange with solute scaling (REST2), and examine the ability of four force fields (ff14SB, ff14IDPSFF, CHARMM36 and CHARMM36m) to reproduce literature circular dichroism (CD) data. Results from variable temperature (VT) 1H and Rotating frame Overhauser Effect SpectroscopY (ROESY) nuclear magnetic resonance (NMR) experiments are also presented and are consistent with the structural observations obtained from the simulations and CD. We also apply the optimum simulation protocol to TP2 and ONEG (a cell-penetrating peptide (CPP) and a negative control peptide, respectively) to gain insight into the structural differences that may account for the observed difference in their membrane-penetrating abilities. Of the tested force fields, we find that CHARMM36 and CHARMM36m are best suited to the study of IDPs, and accurately predict a disordered to helical conformational transition of the PLP peptide accompanying the change from aqueous to membrane-mimicking solvents. We also identify an α-helical structure of TP2 in the membrane-mimicking solvents and provide a discussion of the mechanistic implications of this observation with reference to the previous literature on the peptide. From these results, we recommend the use of CHARMM36m with the REST2 protocol for the study of environment-specific IDP conformations. We believe that the simulation protocol will allow the study of a broad range of IDPs that undergo conformational transitions in different biological environments.
Collapse
Affiliation(s)
- Lauren M Reid
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
- Bioinformatics Institute (ASTAR) 30 Biolpolis Street Matrix 138671 Singapore
- MedChemica Ltd Alderley Park Macclesfield Cheshire SK10 4TG UK
| | - Ileana Guzzetti
- Medical Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | - Tor Svensson
- Medical Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | - Anna-Carin Carlsson
- Early Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | - Wu Su
- Medical Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | - Tomas Leek
- Medical Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | - Lena von Sydow
- Medical Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | - Werngard Czechtizky
- Medical Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | - Marija Miljak
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Chandra Verma
- Bioinformatics Institute (ASTAR) 30 Biolpolis Street Matrix 138671 Singapore
- Department of Biological Sciences, National University of Singapore 16 Science Drive 4 117558 Singapore
- School of Biological Sciences, Nanyang Technological University 60 Nanyang Dr 637551 Singapore
| | - Leonardo De Maria
- Medical Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | - Jonathan W Essex
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| |
Collapse
|
6
|
Damjanovic J, Miao J, Huang H, Lin YS. Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations. Chem Rev 2021; 121:2292-2324. [PMID: 33426882 DOI: 10.1021/acs.chemrev.0c01087] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein-protein interactions are vital to biological processes, but the shape and size of their interfaces make them hard to target using small molecules. Cyclic peptides have shown promise as protein-protein interaction modulators, as they can bind protein surfaces with high affinity and specificity. Dozens of cyclic peptides are already FDA approved, and many more are in various stages of development as immunosuppressants, antibiotics, antivirals, or anticancer drugs. However, most cyclic peptide drugs so far have been natural products or derivatives thereof, with de novo design having proven challenging. A key obstacle is structural characterization: cyclic peptides frequently adopt multiple conformations in solution, which are difficult to resolve using techniques like NMR spectroscopy. The lack of solution structural information prevents a thorough understanding of cyclic peptides' sequence-structure-function relationship. Here we review recent development and application of molecular dynamics simulations with enhanced sampling to studying the solution structures of cyclic peptides. We describe novel computational methods capable of sampling cyclic peptides' conformational space and provide examples of computational studies that relate peptides' sequence and structure to biological activity. We demonstrate that molecular dynamics simulations have grown from an explanatory technique to a full-fledged tool for systematic studies at the forefront of cyclic peptide therapeutic design.
Collapse
Affiliation(s)
- Jovan Damjanovic
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - He Huang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
7
|
Billard E, Chatenet D. Insights into the Molecular Determinants Involved in Urocontrin and Urocontrin A Action. ACS Med Chem Lett 2020; 11:1717-1722. [PMID: 32944139 DOI: 10.1021/acsmedchemlett.0c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022] Open
Abstract
In the past few years, we have identified two allosteric modulators of the urotensinergic system with probe-dependent action, termed Urocontrin (UC) and Urocontrin A (UCA). Such action is atypical and important since it will allow us to understand the specific function of the functionally selective cognate ligands of this system, namely urotensin II and urotensin II-related peptide. Delineating the molecular determinants involved in this particular behavior would represent an important step toward designing small molecules suitable for pharmacologic and/or therapeutic intervention. Hence, we undertook an exploratory research by replacing the Trp4 residue of URP with several para-substituted phenylalanine amino acids in order to get a grasp on the required nature, distance, and orientation of the side chain of this residue for allosteric modulatory action. We found that the position of the second aromatic group is crucial, and we identified two new allosteric modulators: [Trip4]URP and [Phe(pPy-4)4]URP with probe-dependent action.
Collapse
Affiliation(s)
- Etienne Billard
- INRS - Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7 V 1B7, Canada
| | - David Chatenet
- INRS - Institut Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7 V 1B7, Canada
| |
Collapse
|
8
|
Nassour H, Iddir M, Chatenet D. Towards Targeting the Urotensinergic System: Overview and Challenges. Trends Pharmacol Sci 2019; 40:725-734. [DOI: 10.1016/j.tips.2019.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
|
9
|
Huggins DJ, Biggin PC, Dämgen MA, Essex JW, Harris SA, Henchman RH, Khalid S, Kuzmanic A, Laughton CA, Michel J, Mulholland AJ, Rosta E, Sansom MSP, van der Kamp MW. Biomolecular simulations: From dynamics and mechanisms to computational assays of biological activity. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1393] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- David J. Huggins
- TCM Group, Cavendish Laboratory University of Cambridge Cambridge UK
- Unilever Centre, Department of Chemistry University of Cambridge Cambridge UK
- Department of Physiology and Biophysics Weill Cornell Medical College New York NY
| | | | - Marc A. Dämgen
- Department of Biochemistry University of Oxford Oxford UK
| | - Jonathan W. Essex
- School of Chemistry University of Southampton Southampton UK
- Institute for Life Sciences University of Southampton Southampton UK
| | - Sarah A. Harris
- School of Physics and Astronomy University of Leeds Leeds UK
- Astbury Centre for Structural and Molecular Biology University of Leeds Leeds UK
| | - Richard H. Henchman
- Manchester Institute of Biotechnology The University of Manchester Manchester UK
- School of Chemistry The University of Manchester Oxford UK
| | - Syma Khalid
- School of Chemistry University of Southampton Southampton UK
- Institute for Life Sciences University of Southampton Southampton UK
| | | | - Charles A. Laughton
- School of Pharmacy University of Nottingham Nottingham UK
- Centre for Biomolecular Sciences University of Nottingham Nottingham UK
| | - Julien Michel
- EaStCHEM school of Chemistry University of Edinburgh Edinburgh UK
| | - Adrian J. Mulholland
- Centre of Computational Chemistry, School of Chemistry University of Bristol Bristol UK
| | - Edina Rosta
- Department of Chemistry King's College London London UK
| | | | - Marc W. van der Kamp
- Centre of Computational Chemistry, School of Chemistry University of Bristol Bristol UK
- School of Biochemistry, Biomedical Sciences Building University of Bristol Bristol UK
| |
Collapse
|
10
|
Sun XQ, Chen S, Wang LF, Chen ZW. Total flavones of Rhododendron simsii Planch flower protect isolated rat heart from ischaemia-reperfusion injury and its mechanism of UTR-RhoA-ROCK pathway inhibition. J Pharm Pharmacol 2018; 70:1713-1722. [DOI: 10.1111/jphp.13016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/02/2018] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Total flavones of Rhododendron simsii Planch flower (TFR) are an effective part extracted from the flower. The present study was designed to investigate the protective effect of TFR in isolated rat heart following global ischaemia-reperfusion and the possible underlying mechanisms.
Methods
Langendorff perfusion apparatus was used to perfuse isolated rat heart which was subjected to global ischaemia-reperfusion. The hemodynamic parameters were continuously monitored. Coronary flow as well as lactate dehydrogenase (LDH), creatine phosphokinase-MB (CK-MB) and cardiac troponin I (cTnI) in coronary effluents was measured. RhoA activity and urotensin receptor (UTR) and Rho-related coiled-coil-forming protein kinase (ROCK) protein expressions in rat myocardium were examined, respectively. Cardiac dysfunction was indicated by the alterations of hemodynamic parameters and the reduced coronary flow.
Key findings
Total flavones of Rhododendron simsii Planch flower significantly improved ischaemia-reperfusion–induced cardiac dysfunction and leakages of LDH, CK-MB and cTnI, and inhibited myocardial ischaemia-reperfusion–increased RhoA activity and UTR, ROCK1 and ROCK2 protein expressions. The improvement of TFR in the cardiac dysfunction and the leakage of LDH, CK-MB and cTnI were markedly attenuated under the UTR blockade and ROCK inhibition. TFR-inhibited RhoA activity was decreased under the UTR blockade.
Conclusions
Total flavones of Rhododendron simsii Planch flower had a protective effect on ischaemia-reperfusion injury in isolated rat heart, which may be attributed to the blocking of UTR and subsequent inhibition of the RhoA-ROCK pathway.
Collapse
Affiliation(s)
- Xiao-Qing Sun
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Shuo Chen
- Department of Physiology, Anhui Medical University, Hefei, Anhui, China
| | - Liang-Fang Wang
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Zhi-Wu Chen
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Douchez A, Billard E, Hébert TE, Chatenet D, Lubell WD. Design, Synthesis, and Biological Assessment of Biased Allosteric Modulation of the Urotensin II Receptor Using Achiral 1,3,4-Benzotriazepin-2-one Turn Mimics. J Med Chem 2017; 60:9838-9859. [DOI: 10.1021/acs.jmedchem.7b01525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Antoine Douchez
- Département
de Chimie, Université de Montréal, CP 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
- INRS—Institut
Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides
et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | - Etienne Billard
- INRS—Institut
Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides
et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | - Terence E. Hébert
- Department
of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - David Chatenet
- INRS—Institut
Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides
et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | - William D. Lubell
- Département
de Chimie, Université de Montréal, CP 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
12
|
Billard E, Létourneau M, Hébert TE, Chatenet D. Insight into the role of urotensin II-related peptide tyrosine residue in UT activation. Biochem Pharmacol 2017; 144:100-107. [DOI: 10.1016/j.bcp.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022]
|