1
|
Abstract
A modified neglect of differential overlap has been parameterized specifically for water and its oligomers with the addition of polarization functions on both hydrogen and oxygen, Feynman dispersion, and a slight modification of the treatment of the hydrogen nucleus. The results show that it is possible to easily obtain good geometries and energies for hydrogen-bonded water aggregates. Data from the Benchmark Energy and Geometry Database water-cluster database were used to parameterize the new Hamiltonian for water clusters from the dimer to the decamer using MP2/aug-cc-pVDZ optimized geometries and CCSD(T)/CBS oligomerization energies. Seventy five oligomerization and rearrangement energies derived from the parameterization data are reproduced with a root mean-square error (RMSE) of 0.79 kcal mol-1 and the geometries of 38 oligomers with an RMSE of 0.17 Å. Interestingly, the Feynman dispersion term adopts a role different from that intended and tunes the atomic polarizability. The implications of these results in terms of future dedicated neglect of diatomic differential overlap Hamiltonians and those that use force-field-like atom types are discussed.
Collapse
Affiliation(s)
- Matthias Hennemann
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg, Naegelsbachstr. 25, 91052 Erlangen, Germany
| | - Timothy Clark
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg, Naegelsbachstr. 25, 91052 Erlangen, Germany
| |
Collapse
|
2
|
Abstract
The way chemists represent chemical structures as two-dimensional sketches made up of atoms and bonds, simplifying the complex three-dimensional molecules comprising nuclei and electrons of the quantum mechanical description, is the everyday language of chemistry. This language uses models, particularly of bonding, that are not contained in the quantum mechanical description of chemical systems, but has been used to derive machine-readable formats for storing and manipulating chemical structures in digital computers. This language is fuzzy and varies from chemist to chemist but has been astonishingly successful and perhaps contributes with its fuzziness to the success of chemistry. It is this creative imagination of chemical structures that has been fundamental to the cognition of chemistry and has allowed thought experiments to take place. Within the everyday language, the model nature of these concepts is not always clear to practicing chemists, so that controversial discussions about the merits of alternative models often arise. However, the extensive use of artificial intelligence (AI) and machine learning (ML) in chemistry, with the aim of being able to make reliable predictions, will require that these models be extended to cover all relevant properties and characteristics of chemical systems. This, in turn, imposes conditions such as completeness, compactness, computational efficiency and non-redundancy on the extensions to the almost universal Lewis and VSEPR bonding models. Thus, AI and ML are likely to be important in rationalizing, extending and standardizing chemical bonding models. This will not affect the everyday language of chemistry but may help to understand the unique basis of chemical language.
Collapse
Affiliation(s)
- Timothy Clark
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Martin G Hicks
- Beilstein-Institut, Trakehner Str. 7–9, 60487 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Panosetti C, Engelmann A, Nemec L, Reuter K, Margraf JT. Learning to Use the Force: Fitting Repulsive Potentials in Density-Functional Tight-Binding with Gaussian Process Regression. J Chem Theory Comput 2020; 16:2181-2191. [DOI: 10.1021/acs.jctc.9b00975] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chiara Panosetti
- Chair for Theoretical Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Artur Engelmann
- Chair for Theoretical Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Lydia Nemec
- Chair for Theoretical Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Johannes T. Margraf
- Chair for Theoretical Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85747 Garching, Germany
| |
Collapse
|
4
|
Kriebel M, Heßelmann A, Hennemann M, Clark T. The Feynman dispersion correction for MNDO extended to F, Cl, Br and I. J Mol Model 2019; 25:156. [DOI: 10.1007/s00894-019-4038-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/15/2019] [Indexed: 11/25/2022]
|
5
|
|
6
|
Margraf JT, Dral PO. What is semiempirical molecular orbital theory approximating? J Mol Model 2019; 25:119. [DOI: 10.1007/s00894-019-4005-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/21/2019] [Indexed: 01/13/2023]
|
7
|
Řezáč J. Description of halogen bonding in semiempirical quantum-mechanical and self-consistent charge density-functional tight-binding methods. J Comput Chem 2019; 40:1633-1642. [PMID: 30941801 DOI: 10.1002/jcc.25816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022]
Abstract
This article analyzes the ability of semiempirical quantum-mechanical methods (PM6 and PM7) and self-consistent charge density-functional tight-binding (SCC-DFTB) method DFTB3 to describe halogen bonds. Calculations of the electrostatic potential on the surface of molecules containing halogens show that the σ-hole could be described well in modified neglect of diatomic overlap-based methods. The situation is more complex in the case of DFTB3 where a simpler model is used for the electrostatics, but short-ranged effects are covered in the Hamiltonian. All these methods can thus capture the effects that, for example, define the geometry of halogen bonds. The interaction energies are, however, affected by generally underestimated repulsion, which has been addressed earlier by standalone empirical corrections. Another approach to correcting this issue in DFTB3 is presented here-a modification of the energies of d-orbitals on halogens yields better results than the empirical correction in DFTB3-D3X, although it remains difficult to describe halogen and hydrogen bonds simultaneously. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jan Řezáč
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10, Prague, Czech Republic
| |
Collapse
|
8
|
A Trajectory-Based Method to Explore Reaction Mechanisms. Molecules 2018; 23:molecules23123156. [PMID: 30513663 PMCID: PMC6321347 DOI: 10.3390/molecules23123156] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 12/02/2022] Open
Abstract
The tsscds method, recently developed in our group, discovers chemical reaction mechanisms with minimal human intervention. It employs accelerated molecular dynamics, spectral graph theory, statistical rate theory and stochastic simulations to uncover chemical reaction paths and to solve the kinetics at the experimental conditions. In the present review, its application to solve mechanistic/kinetics problems in different research areas will be presented. Examples will be given of reactions involved in photodissociation dynamics, mass spectrometry, combustion chemistry and organometallic catalysis. Some planned improvements will also be described.
Collapse
|
9
|
Matter H, Güssregen S. Characterizing hydration sites in protein-ligand complexes towards the design of novel ligands. Bioorg Med Chem Lett 2018; 28:2343-2352. [PMID: 29880400 DOI: 10.1016/j.bmcl.2018.05.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 11/18/2022]
Abstract
Water is an essential part of protein binding sites and mediates interactions to ligands. Its displacement by ligand parts affects the free binding energy of resulting protein-ligand complexes. Therefore the characterization of solvation properties is important for design. Of particular interest is the propensity of localized water to be favorably displaced by a ligand. This review discusses two popular computational approaches addressing these questions, namely WaterMap based on statistical mechanics analysis of MD simulations and 3D RISM based on integral equation theory of liquids. The theoretical background and recent applications in structure-based design will be presented.
Collapse
Affiliation(s)
- Hans Matter
- Sanofi-Aventis Deutschland GmbH, Integrated Drug Discovery (IDD), Synthetic Molecular Design, Building G838, Industriepark Höchst, 65926 Frankfurt am Main, Germany.
| | - Stefan Güssregen
- Sanofi-Aventis Deutschland GmbH, Integrated Drug Discovery (IDD), Synthetic Molecular Design, Building G838, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Roy D, Blinov N, Kovalenko A. Predicting Accurate Solvation Free Energy in n-Octanol Using 3D-RISM-KH Molecular Theory of Solvation: Making Right Choices. J Phys Chem B 2017; 121:9268-9273. [PMID: 28880087 DOI: 10.1021/acs.jpcb.7b06375] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular theory of solvation, a.k.a., three-dimensional reference interaction site model theory of solvation with Kovalenko-Hirata closure relation (3D-RISM-KH), is an accurate and fast theory predicting solvation free energy and structure. Here we report a benchmark study of n-octanol solvation free energy calculations using this theory. The choice of correct force field parameters is quintessential for the success of 3D-RISM theory, and we present a guideline to obtain them for n-octanol solvent. Our best prediction of the solvation free energy on a set of 205 small organic molecules supplemented with the so-called "universal correction" scheme yields relative mean unsigned error of 0.94 kcal/mol against the reported database. The best agreement is obtained with the united atom (UA) type force field parametrization of n-octanol with the van der Waals parameters of hydroxyl hydrogen reported by Kobryn et al. [ Kobryn , A. E. ; Kovalenko , A. J. Chem. Phys. 2008 , 129 , 134701 ].
Collapse
Affiliation(s)
- Dipankar Roy
- Department of Mechanical Engineering, University of Alberta 10-203 Donadeo Innovation Centre for Engineering , 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.,National Institute for Nanotechnology , 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| | - Nikolay Blinov
- Department of Mechanical Engineering, University of Alberta 10-203 Donadeo Innovation Centre for Engineering , 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.,National Institute for Nanotechnology , 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| | - Andriy Kovalenko
- Department of Mechanical Engineering, University of Alberta 10-203 Donadeo Innovation Centre for Engineering , 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.,National Institute for Nanotechnology , 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| |
Collapse
|