1
|
Mohseni Behbahani Y, Saighi P, Corsi F, Laine E, Carbone A. LEVELNET to visualize, explore, and compare protein-protein interaction networks. Proteomics 2023; 23:e2200159. [PMID: 37403279 DOI: 10.1002/pmic.202200159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 07/06/2023]
Abstract
Physical interactions between proteins are central to all biological processes. Yet, the current knowledge of who interacts with whom in the cell and in what manner relies on partial, noisy, and highly heterogeneous data. Thus, there is a need for methods comprehensively describing and organizing such data. LEVELNET is a versatile and interactive tool for visualizing, exploring, and comparing protein-protein interaction (PPI) networks inferred from different types of evidence. LEVELNET helps to break down the complexity of PPI networks by representing them as multi-layered graphs and by facilitating the direct comparison of their subnetworks toward biological interpretation. It focuses primarily on the protein chains whose 3D structures are available in the Protein Data Bank. We showcase some potential applications, such as investigating the structural evidence supporting PPIs associated to specific biological processes, assessing the co-localization of interaction partners, comparing the PPI networks obtained through computational experiments versus homology transfer, and creating PPI benchmarks with desired properties.
Collapse
Affiliation(s)
- Yasser Mohseni Behbahani
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Paul Saighi
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Flavia Corsi
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris, France
| |
Collapse
|
2
|
Soft disorder modulates the assembly path of protein complexes. PLoS Comput Biol 2022; 18:e1010713. [DOI: 10.1371/journal.pcbi.1010713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/01/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022] Open
Abstract
The relationship between interactions, flexibility and disorder in proteins has been explored from many angles over the years: folding upon binding, flexibility of the core relative to the periphery, entropy changes, etc. In this work, we provide statistical evidence for the involvement of highly mobile and disordered regions in complex assembly. We ordered the entire set of X-ray crystallographic structures in the Protein Data Bank into hierarchies of progressive interactions involving identical or very similar protein chains, yielding 40205 hierarchies of protein complexes with increasing numbers of partners. We then examine them as proxies for the assembly pathways. Using this database, we show that upon oligomerisation, the new interfaces tend to be observed at residues that were characterised as softly disordered (flexible, amorphous or missing residues) in the complexes preceding them in the hierarchy. We also rule out the possibility that this correlation is just a surface effect by restricting the analysis to residues on the surface of the complexes. Interestingly, we find that the location of soft disordered residues in the sequence changes as the number of partners increases. Our results show that there is a general mechanism for protein assembly that involves soft disorder and modulates the way protein complexes are assembled. This work highlights the difficulty of predicting the structure of large protein complexes from sequence and emphasises the importance of linking predictors of soft disorder to the next generation of predictors of complex structure. Finally, we investigate the relationship between the Alphafold2’s confidence metric pLDDT for structure prediction in unbound versus bound structures, and soft disorder. We show a strong correlation between Alphafold2 low confidence residues and the union of all regions of soft disorder observed in the hierarchy. This paves the way for using the pLDDT metric as a proxy for predicting interfaces and assembly paths.
Collapse
|
3
|
Mohseni Behbahani Y, Crouzet S, Laine E, Carbone A. Deep Local Analysis evaluates protein docking conformations with locally oriented cubes. Bioinformatics 2022; 38:4505-4512. [PMID: 35962985 PMCID: PMC9525006 DOI: 10.1093/bioinformatics/btac551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION With the recent advances in protein 3D structure prediction, protein interactions are becoming more central than ever before. Here, we address the problem of determining how proteins interact with one another. More specifically, we investigate the possibility of discriminating near-native protein complex conformations from incorrect ones by exploiting local environments around interfacial residues. RESULTS Deep Local Analysis (DLA)-Ranker is a deep learning framework applying 3D convolutions to a set of locally oriented cubes representing the protein interface. It explicitly considers the local geometry of the interfacial residues along with their neighboring atoms and the regions of the interface with different solvent accessibility. We assessed its performance on three docking benchmarks made of half a million acceptable and incorrect conformations. We show that DLA-Ranker successfully identifies near-native conformations from ensembles generated by molecular docking. It surpasses or competes with other deep learning-based scoring functions. We also showcase its usefulness to discover alternative interfaces. AVAILABILITY AND IMPLEMENTATION http://gitlab.lcqb.upmc.fr/dla-ranker/DLA-Ranker.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yasser Mohseni Behbahani
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris 75005, France
| | - Simon Crouzet
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, Paris 75005, France
| | | | | |
Collapse
|
4
|
From complete cross-docking to partners identification and binding sites predictions. PLoS Comput Biol 2022; 18:e1009825. [PMID: 35089918 PMCID: PMC8827487 DOI: 10.1371/journal.pcbi.1009825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/09/2022] [Accepted: 01/11/2022] [Indexed: 11/19/2022] Open
Abstract
Proteins ensure their biological functions by interacting with each other. Hence, characterising protein interactions is fundamental for our understanding of the cellular machinery, and for improving medicine and bioengineering. Over the past years, a large body of experimental data has been accumulated on who interacts with whom and in what manner. However, these data are highly heterogeneous and sometimes contradictory, noisy, and biased. Ab initio methods provide a means to a "blind" protein-protein interaction network reconstruction. Here, we report on a molecular cross-docking-based approach for the identification of protein partners. The docking algorithm uses a coarse-grained representation of the protein structures and treats them as rigid bodies. We applied the approach to a few hundred of proteins, in the unbound conformations, and we systematically investigated the influence of several key ingredients, such as the size and quality of the interfaces, and the scoring function. We achieved some significant improvement compared to previous works, and a very high discriminative power on some specific functional classes. We provide a readout of the contributions of shape and physico-chemical complementarity, interface matching, and specificity, in the predictions. In addition, we assessed the ability of the approach to account for protein surface multiple usages, and we compared it with a sequence-based deep learning method. This work may contribute to guiding the exploitation of the large amounts of protein structural models now available toward the discovery of unexpected partners and their complex structure characterisation.
Collapse
|
5
|
Seoane B, Carbone A. The complexity of protein interactions unravelled from structural disorder. PLoS Comput Biol 2021; 17:e1008546. [PMID: 33417598 PMCID: PMC7846008 DOI: 10.1371/journal.pcbi.1008546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 01/29/2021] [Accepted: 11/18/2020] [Indexed: 11/19/2022] Open
Abstract
The importance of unstructured biology has quickly grown during the last decades accompanying the explosion of the number of experimentally resolved protein structures. The idea that structural disorder might be a novel mechanism of protein interaction is widespread in the literature, although the number of statistically significant structural studies supporting this idea is surprisingly low. At variance with previous works, our conclusions rely exclusively on a large-scale analysis of all the 134337 X-ray crystallographic structures of the Protein Data Bank averaged over clusters of almost identical protein sequences. In this work, we explore the complexity of the organisation of all the interaction interfaces observed when a protein lies in alternative complexes, showing that interfaces progressively add up in a hierarchical way, which is reflected in a logarithmic law for the size of the union of the interface regions on the number of distinct interfaces. We further investigate the connection of this complexity with different measures of structural disorder: the standard missing residues and a new definition, called "soft disorder", that covers all the flexible and structurally amorphous residues of a protein. We show evidences that both the interaction interfaces and the soft disordered regions tend to involve roughly the same amino-acids of the protein, and preliminary results suggesting that soft disorder spots those surface regions where new interfaces are progressively accommodated by complex formation. In fact, our results suggest that structurally disordered regions not only carry crucial information about the location of alternative interfaces within complexes, but also about the order of the assembly. We verify these hypotheses in several examples, such as the DNA binding domains of P53 and P73, the C3 exoenzyme, and two known biological orders of assembly. We finally compare our measures of structural disorder with several disorder bioinformatics predictors, showing that these latter are optimised to predict the residues that are missing in all the alternative structures of a protein and they are not able to catch the progressive evolution of the disordered regions upon complex formation. Yet, the predicted residues, when not missing, tend to be characterised as soft disordered regions.
Collapse
Affiliation(s)
- Beatriz Seoane
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, Paris, France
- Sorbonne Université, Institut des Sciences du Calcul et des Données, Paris, France
- Departamento de Física Teórica, Universidad Complutense, Madrid, Spain
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, Paris, France
| |
Collapse
|
6
|
Dequeker C, Laine E, Carbone A. Decrypting protein surfaces by combining evolution, geometry, and molecular docking. Proteins 2019; 87:952-965. [PMID: 31199528 PMCID: PMC6852240 DOI: 10.1002/prot.25757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/09/2019] [Accepted: 06/07/2019] [Indexed: 01/30/2023]
Abstract
The growing body of experimental and computational data describing how proteins interact with each other has emphasized the multiplicity of protein interactions and the complexity underlying protein surface usage and deformability. In this work, we propose new concepts and methods toward deciphering such complexity. We introduce the notion of interacting region to account for the multiple usage of a protein's surface residues by several partners and for the variability of protein interfaces coming from molecular flexibility. We predict interacting patches by crossing evolutionary, physicochemical and geometrical properties of the protein surface with information coming from complete cross-docking (CC-D) simulations. We show that our predictions match well interacting regions and that the different sources of information are complementary. We further propose an indicator of whether a protein has a few or many partners. Our prediction strategies are implemented in the dynJET2 algorithm and assessed on a new dataset of 262 protein on which we performed CC-D. The code and the data are available at: http://www.lcqb.upmc.fr/dynJET2/.
Collapse
Affiliation(s)
- Chloé Dequeker
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| | - Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
7
|
The Symmetric Difference Distance: A New Way to Evaluate the Evolution of Interfaces along Molecular Dynamics Trajectories; Application to Influenza Hemagglutinin. Symmetry (Basel) 2019. [DOI: 10.3390/sym11050662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We propose a new and easy approach to evaluate structural dissimilarities between frames issued from molecular dynamics, and we test this methodology on human hemagglutinin. This protein is responsible for the entry of the influenza virus into the host cell by endocytosis, and this virus causes seasonal epidemics of infectious disease, which can be estimated to result in hundreds of thousands of deaths each year around the world. We computed the three interfaces between the three protomers of the hemagglutinin H1 homotrimer (PDB code: 1RU7) for each of its conformations generated from molecular dynamics simulation. For each conformation, we considered the set of residues involved in the union of these three interfaces. The dissimilarity between each pair of conformations was measured with our new methodology, the symmetric difference distance between the associated set of residues. The main advantages of the full procedure are: (i) it is parameter free; (ii) no spatial alignment is needed and (iii) it is simple enough so that it can be implemented by a beginner in programming. It is shown to be a relevant tool to follow the evolution of the conformation along the molecular dynamics trajectories.
Collapse
|