1
|
Hadi-Alijanvand H, Di Paola L, Hu G, Leitner DM, Verkhivker GM, Sun P, Poudel H, Giuliani A. Biophysical Insight into the SARS-CoV2 Spike-ACE2 Interaction and Its Modulation by Hepcidin through a Multifaceted Computational Approach. ACS OMEGA 2022; 7:17024-17042. [PMID: 35600142 PMCID: PMC9113007 DOI: 10.1021/acsomega.2c00154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/15/2022] [Indexed: 05/08/2023]
Abstract
At the center of the SARS-CoV2 infection, the spike protein and its interaction with the human receptor ACE2 play a central role in the molecular machinery of SARS-CoV2 infection of human cells. Vaccine therapies are a valuable barrier to the worst effects of the virus and to its diffusion, but the need of purposed drugs is emerging as a core target of the fight against COVID19. In this respect, the repurposing of drugs has already led to discovery of drugs thought to reduce the effects of the cytokine storm, but still a drug targeting the spike protein, in the infection stage, is missing. In this work, we present a multifaceted computational approach strongly grounded on a biophysical modeling of biological systems, so to disclose the interaction of the SARS-CoV2 spike protein with ACE2 with a special focus to an allosteric regulation of the spike-ACE2 interaction. Our approach includes the following methodologies: Protein Contact Networks and Network Clustering, Targeted Molecular Dynamics, Elastic Network Modeling, Perturbation Response Scanning, and a computational analysis of energy flow and SEPAS as a protein-softness and monomer-based affinity predictor. We applied this approach to free (closed and open) states of spike protein and spike-ACE2 complexes. Eventually, we analyzed the interactions of free and bound forms of spike with hepcidin (HPC), the major hormone in iron regulation, recently addressed as a central player in the COVID19 pathogenesis, with a special emphasis to the most severe outcomes. Our results demonstrate that, compared with closed and open states, the spike protein in the ACE2-bound state shows higher allosteric potential. The correspondence between hinge sites and the Allosteric Modulation Region (AMR) in the S-ACE complex suggests a molecular basis for hepcidin involvement in COVID19 pathogenesis. We verify the importance of AMR in different states of spike and then study its interactions with HPC and the consequence of the HPC-AMR interaction on spike dynamics and its affinity for ACE2. We propose two complementary mechanisms for HPC effects on spike of SARS-CoV-2; (a) HPC acts as a competitive inhibitor when spike is in a preinfection state (open and with no ACE2), (b) the HPC-AMR interaction pushes the spike structure into the safer closed state. These findings need clear molecular in vivo verification beside clinical observations.
Collapse
Affiliation(s)
- Hamid Hadi-Alijanvand
- Department
of Biological Sciences, Institute for Advanced
Studies in Basic Sciences, Zanjan 45137-66731, Iran
| | - Luisa Di Paola
- Unit
of Chemical-Physics Fundamentals in Chemical Engineering, Department
of Engineering, Università Campus
Bio-Medico di Roma, via
Álvaro del Portillo 21, Rome 00128, Italy
| | - Guang Hu
- Center
for Systems Biology, Department of Bioinformatics, School of Biology
and Basic Medical Sciences, Soochow University, Suzhou 215123, China
- . Phone: +39 (06) 225419634
| | - David M. Leitner
- Department
of Chemistry, University of Nevada, Reno 89557, Nevada, United States
| | - Gennady M. Verkhivker
- Keck
Center for Science and Engineering, Schmid College of Science and
Technology, Chapman University, One University Drive, Orange 92866, California, United States
- Department
of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine 92618, California, United States
| | - Peixin Sun
- Center
for Systems Biology, Department of Bioinformatics, School of Biology
and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Humanath Poudel
- Department
of Chemistry, University of Nevada, Reno 89557, Nevada, United States
| | - Alessandro Giuliani
- Environmental
and Health Department, Istituto Superiore
di Sanità, Rome 00161, Italy
| |
Collapse
|
2
|
Rouhani M, Hadi-Alijanvand H. Effect of Lithium Drug on Binding Affinities of Glycogen Synthase Kinase-3 β to Its Network Partners: A New Computational Approach. J Chem Inf Model 2021; 61:5280-5292. [PMID: 34533953 DOI: 10.1021/acs.jcim.1c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Finding new methods to study the effect of small molecules on protein interaction networks provides us with invaluable tools in the fields of pharmacodynamics and drug design. Lithium is an antimanic drug that has been used for the treatment of bipolar disorder for more than 60 years. Here, we utilized a new approach to study the effect of lithium as a drug on the protein interaction network of GSK-3β as a hub protein and computed the affinities of GSK-3β to its partners in the presence of lithium or sodium ions. For this purpose, ensembles of GSK-3β protein structures were created in the presence of either lithium or sodium ions using adaptive tempering molecular dynamics simulations. The protein binding patches of GSK-3β for its partners were determined, and finally, the affinity of each binding patch to the related partner was computed for structures of ensembles using a monomer-based approach. Besides, by comparing structural dynamics of GSK-3β during MD simulations in the presence of LiCl and NaCl, we suggested a new mechanism for the inhibitory effect of lithium on GSK-3β.
Collapse
Affiliation(s)
- Maryam Rouhani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Hamid Hadi-Alijanvand
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
3
|
Hadi-Alijanvand H. Complex Stability is Encoded in Binding Patch Softness: a Monomer-Based Approach to Predict Inter-Subunit Affinity of Protein Dimers. J Proteome Res 2019; 19:409-423. [PMID: 31795635 DOI: 10.1021/acs.jproteome.9b00594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Knowledge about the structure and stability of protein-protein interactions is vital to decipher the behavior of protein systems. Prediction of protein complexes' stability is an interesting topic in the field of structural biology. There are some promising published computational approaches that predict the affinity between subunits of protein dimers using 3D structures of both subunits. In the current study, we classify protein complexes with experimentally measured affinities into distinct classes with different mean affinities. By predicting the mechanical stiffness of the protein binding patch (PBP) region on a single subunit, we successfully predict the assigned affinity class of the PBP in the classification step. Now to predict the experimentally measured affinity between protein monomers in solution, we just need the 3D structure of the suggested PBP on one subunit of the proposed dimer. We designed the SEPAS software and have made the software freely available for academic non-commercial research purposes at " http://biophysics.ir/affinity ". SEPAS predicts the stability of the intended dimer in a classwise manner by utilizing the computed mechanical stiffness of the introduced binding site on one subunit with the minimum accuracy of 0.72.
Collapse
Affiliation(s)
- Hamid Hadi-Alijanvand
- Department of Biological Sciences , Institute for Advanced Studies in Basic Sciences (IASBS) , Zanjan 45137-66731 , Iran
| |
Collapse
|
4
|
Hadi-Alijanvand H. Soft regions of protein surface are potent for stable dimer formation. J Biomol Struct Dyn 2019; 38:3587-3598. [PMID: 31476974 DOI: 10.1080/07391102.2019.1662328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
By having knowledge about the characteristics of protein interaction interfaces, we will be able to manipulate protein complexes for therapies. Dimer state is considered as the primary alphabet of the most proteins' quaternary structure. The properties of binding interface between subunits and of noninterface region define the specificity and stability of the intended protein complex. Considering some topological properties and amino acids' affinity for binding in interfaces of protein dimers, we construct the interface-specific recurrence plots. The data obtained from recurrence quantitative analysis, and accessibility-related metrics help us to classify the protein dimers into four distinct classes. Some mechanical properties of binding interfaces are computed for each predefined class of the dimers. The computed mechanical characteristics of binding patch region are compared with those of nonbinding region of proteins. Our observations indicate that the mechanical properties of protein binding sites have a decisive impact on determining the dimer stability. We introduce a new concept in analyzing protein structure by considering mechanical properties of protein structure. We conclude that the interface region between subunits of stable dimers is usually mechanically softer than the interface of unstable protein dimers. AbbreviationsAABaverage affinity for bindingANManisotropic network modelAPCaffinity propagation clusteringASAaccessible surface areaCCDinter residues distanceCSCcomplex stability codeDMdistance matrixΔGdissPISA-computed dissociation free energyGNMGaussian normal mode analysisNMAnormal mode analysisPBPprotein binding patchPISAproteins, interfaces, structures and assembliesrASArelative accessible area in respect to unfolded state of residuesRMrecurrence matrixrPrelative protrusionRPrecurrence plotRQArecurrence quantitative analysisSEMstandard error of meanCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamid Hadi-Alijanvand
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| |
Collapse
|