1
|
Raubenolt BA, Rick SW. Simulation studies of polypeptoids using replica exchange with dynamical scaling and dihedral biasing. J Comput Chem 2022; 43:1229-1236. [PMID: 35543334 DOI: 10.1002/jcc.26887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022]
Abstract
Polypeptoids differ from polypeptides in that the amide bond can more frequently adopt both cis and trans conformations. The transition between the two conformations requires overcoming a large energy barrier, making it difficult for conventional molecular simulations to adequately visit the cis and trans structures. A replica-exchange method is presented that allows for easy rotations of the amide bond and also an efficient linking to a high temperature replica. The method allows for just three replicas (one at the temperature and Hamiltonian of interest, a second high temperature replica with a biased dihedral potential, and a third connecting them) to overcome the amide bond sampling problem and also enhance sampling for other coordinates. The results indicate that for short peptoid oligomers, the conformations can range from all cis to all trans with an average cis/trans ratio that depends on side chain and potential model.
Collapse
Affiliation(s)
- Bryan A Raubenolt
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA
| | - Steven W Rick
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
2
|
Sun Q, Biswas A, Vijayan RSK, Craveur P, Forli S, Olson AJ, Castaner AE, Kirby KA, Sarafianos SG, Deng N, Levy R. Structure-based virtual screening workflow to identify antivirals targeting HIV-1 capsid. J Comput Aided Mol Des 2022; 36:193-203. [PMID: 35262811 PMCID: PMC8904208 DOI: 10.1007/s10822-022-00446-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
We have identified novel HIV-1 capsid inhibitors targeting the PF74 binding site. Acting as the building block of the HIV-1 capsid core, the HIV-1 capsid protein plays an important role in the viral life cycle and is an attractive target for antiviral development. A structure-based virtual screening workflow for hit identification was employed, which includes docking 1.6 million commercially-available drug-like compounds from the ZINC database to the capsid dimer, followed by applying two absolute binding free energy (ABFE) filters on the 500 top-ranked molecules from docking. The first employs the Binding Energy Distribution Analysis Method (BEDAM) in implicit solvent. The top-ranked compounds are then refined using the Double Decoupling method in explicit solvent. Both docking and BEDAM refinement were carried out on the IBM World Community Grid as part of the FightAIDS@Home project. Using this virtual screening workflow, we identified 24 molecules with calculated binding free energies between − 6 and − 12 kcal/mol. We performed thermal shift assays on these molecules to examine their potential effects on the stability of HIV-1 capsid hexamer and found that two compounds, ZINC520357473 and ZINC4119064 increased the melting point of the latter by 14.8 °C and 33 °C, respectively. These results support the conclusion that the two ZINC compounds are primary hits targeting the capsid dimer interface. Our simulations also suggest that the two hit molecules may bind at the capsid dimer interface by occupying a new sub-pocket that has not been exploited by existing CA inhibitors. The possible causes for why other top-scored compounds suggested by ABFE filters failed to show measurable activity are discussed.
Collapse
Affiliation(s)
- Qinfang Sun
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Avik Biswas
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - R S K Vijayan
- Institute for Applied Cancer Science, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pierrick Craveur
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Arthur J Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andres Emanuelli Castaner
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, NY, 10038, USA.
| | - Ronald Levy
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
3
|
Sasmal S, Gill SC, Lim NM, Mobley DL. Sampling Conformational Changes of Bound Ligands Using Nonequilibrium Candidate Monte Carlo and Molecular Dynamics. J Chem Theory Comput 2020; 16:1854-1865. [PMID: 32058713 PMCID: PMC7325746 DOI: 10.1021/acs.jctc.9b01066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Flexible ligands often have multiple binding modes or bound conformations that differ by rotation of a portion of the molecule around internal rotatable bonds. Knowledge of these binding modes is important for understanding the interactions stabilizing the ligand in the binding pocket, and other studies indicate it is important for calculating accurate binding affinities. In this work, we use a hybrid molecular dynamics (MD)/nonequilibrium candidate Monte Carlo (NCMC) method to sample the different binding modes of several flexible ligands and also to estimate the population distribution of the modes. The NCMC move proposal is divided into three parts. The flexible part of the ligand is alchemically turned off by decreasing the electrostatics and steric interactions gradually, followed by rotating the rotatable bond by a random angle and then slowly turning the ligand back on to its fully interacting state. The alchemical steps prior to and after the move proposal help the surrounding protein and water atoms in the binding pocket relax around the proposed ligand conformation and increase move acceptance rates. The protein-ligand system is propagated using classical MD in between the NCMC proposals. Using this MD/NCMC method, we were able to correctly reproduce the different binding modes of inhibitors binding to two kinase targets-c-Jun N-terminal kinase-1 and cyclin-dependent kinase 2-at a much lower computational cost compared to conventional MD and umbrella sampling. This method is available as a part of the BLUES software package.
Collapse
Affiliation(s)
- Sukanya Sasmal
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Samuel C Gill
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Nathan M Lim
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - David L Mobley
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
4
|
Hahn DF, König G, Hünenberger PH. Overcoming Orthogonal Barriers in Alchemical Free Energy Calculations: On the Relative Merits of λ-Variations, λ-Extrapolations, and Biasing. J Chem Theory Comput 2020; 16:1630-1645. [DOI: 10.1021/acs.jctc.9b00853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- David F. Hahn
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Gerhard König
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Philippe H. Hünenberger
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Pal RK, Gallicchio E. Perturbation potentials to overcome order/disorder transitions in alchemical binding free energy calculations. J Chem Phys 2019; 151:124116. [DOI: 10.1063/1.5123154] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Rajat K. Pal
- Department of Chemistry, Brooklyn College of the City University of New York, New York, New York 11210, USA
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College of the City University of New York, New York, New York 11210, USA
| |
Collapse
|
6
|
Xia J, Flynn W, Gallicchio E, Uplinger K, Armstrong JD, Forli S, Olson AJ, Levy RM. Massive-Scale Binding Free Energy Simulations of HIV Integrase Complexes Using Asynchronous Replica Exchange Framework Implemented on the IBM WCG Distributed Network. J Chem Inf Model 2019; 59:1382-1397. [PMID: 30758197 PMCID: PMC6496938 DOI: 10.1021/acs.jcim.8b00817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To perform massive-scale replica exchange molecular dynamics (REMD) simulations for calculating binding free energies of protein-ligand complexes, we implemented the asynchronous replica exchange (AsyncRE) framework of the binding energy distribution analysis method (BEDAM) in implicit solvent on the IBM World Community Grid (WCG) and optimized the simulation parameters to reduce the overhead and improve the prediction power of the WCG AsyncRE simulations. We also performed the first massive-scale binding free energy calculations using the WCG distributed computing grid and 301 ligands from the SAMPL4 challenge for large-scale binding free energy predictions of HIV-1 integrase complexes. In total there are ∼10000 simulated complexes, ∼1 million replicas, and ∼2000 μs of aggregated MD simulations. Running AsyncRE MD simulations on the WCG requires accepting a trade-off between the number of replicas that can be run (breadth) and the number of full RE cycles that can be completed per replica (depth). As compared with synchronous Replica Exchange (SyncRE) running on tightly coupled clusters like XSEDE, on the WCG many more replicas can be launched simultaneously on heterogeneous distributed hardware, but each full RE cycle requires more overhead. We compared the WCG results with that from AutoDock and more advanced RE simulations including the use of flattening potentials to accelerate sampling of selected degrees of freedom of ligands and/or receptors related to slow dynamics due to high energy barriers. We propose a suitable strategy of RE simulations to refine high throughput docking results which can be matched to corresponding computing resources: from HPC clusters, to small or medium-size distributed campus grids, and finally to massive-scale computing networks including millions of CPUs like the resources available on the WCG.
Collapse
Affiliation(s)
- Junchao Xia
- Center for Biophysics and Computational Biology and Department of Physics , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - William Flynn
- Center for Biophysics and Computational Biology and Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Emilio Gallicchio
- Department of Chemistry , CUNY Brooklyn College , Brooklyn , New York 11210 , United States
| | - Keith Uplinger
- IBM WCG Team, 1177 South Belt Line Road , Coppell , Texas 75019 , United States
| | - Jonathan D Armstrong
- IBM WCG Team, 11400 Burnet Road , 0453B129, Austin , Texas 78758 , United States
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037-1000 , United States
| | - Arthur J Olson
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037-1000 , United States
| | - Ronald M Levy
- Center for Biophysics and Computational Biology and Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
7
|
Hahn DF, Hünenberger PH. Alchemical Free-Energy Calculations by Multiple-Replica λ-Dynamics: The Conveyor Belt Thermodynamic Integration Scheme. J Chem Theory Comput 2019; 15:2392-2419. [PMID: 30821973 DOI: 10.1021/acs.jctc.8b00782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new method is proposed to calculate alchemical free-energy differences based on molecular dynamics (MD) simulations, called the conveyor belt thermodynamic integration (CBTI) scheme. As in thermodynamic integration (TI), K replicas of the system are simulated at different values of the alchemical coupling parameter λ. The number K is taken to be even, and the replicas are equally spaced on a forward-turn-backward-turn path, akin to a conveyor belt (CB) between the two physical end-states; and as in λ-dynamics (λD), the λ-values associated with the individual systems evolve in time along the simulation. However, they do so in a concerted fashion, determined by the evolution of a single dynamical variable Λ of period 2π controlling the advance of the entire CB. Thus, a change of Λ is always associated with K/2 equispaced replicas moving forward and K/2 equispaced replicas moving backward along λ. As a result, the effective free-energy profile of the replica system along Λ is periodic of period 2 πK-1, and the magnitude of its variations decreases rapidly upon increasing K, at least as K-1 in the limit of large K. When a sufficient number of replicas is used, these variations become small, which enables a complete and quasi-homogeneous coverage of the λ-range by the replica system, without application of any biasing potential. If desired, a memory-based biasing potential can still be added to further homogenize the sampling, the preoptimization of which is computationally inexpensive. The final free-energy profile along λ is calculated similarly to TI, by binning of the Hamiltonian λ-derivative as a function of λ considering all replicas simultaneously, followed by quadrature integration. The associated quadrature error can be kept very low owing to the continuous and quasi-homogeneous λ-sampling. The CBTI scheme can be viewed as a continuous/deterministic/dynamical analog of the Hamiltonian replica-exchange/permutation (HRE/HRP) schemes or as a correlated multiple-replica analog of the λD or λ-local elevation umbrella sampling (λ-LEUS) schemes. Compared to TI, it shares the advantage of the latter schemes in terms of enhanced orthogonal sampling, i.e. the availability of variable-λ paths to circumvent conformational barriers present at specific λ-values. Compared to HRE/HRP, it permits a deterministic and continuous sampling of the λ-range, is expected to be less sensitive to possible artifacts of the thermo- and barostating schemes, and bypasses the need to carefully preselect a λ-ladder and a swapping-attempt frequency. Compared to λ-LEUS, it eliminates (or drastically reduces) the dead time associated with the preoptimization of a biasing potential. The goal of this article is to provide the mathematical/physical formulation of the proposed CBTI scheme, along with an initial application of the method to the calculation of the hydration free energy of methanol.
Collapse
Affiliation(s)
- David F Hahn
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland
| |
Collapse
|