1
|
Li XL, Zhang JQ, Shen XJ, Zhang Y, Guo DA. Overview and limitations of database in global traditional medicines: A narrative review. Acta Pharmacol Sin 2024:10.1038/s41401-024-01353-1. [PMID: 39095509 DOI: 10.1038/s41401-024-01353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
The study of traditional medicine has garnered significant interest, resulting in various research areas including chemical composition analysis, pharmacological research, clinical application, and quality control. The abundance of available data has made databases increasingly essential for researchers to manage the vast amount of information and explore new drugs. In this article we provide a comprehensive overview and summary of 182 databases that are relevant to traditional medicine research, including 73 databases for chemical component analysis, 70 for pharmacology research, and 39 for clinical application and quality control from published literature (2000-2023). The review categorizes the databases by functionality, offering detailed information on websites and capacities to facilitate easier access. Moreover, this article outlines the primary function of each database, supplemented by case studies to aid in database selection. A practical test was conducted on 68 frequently used databases using keywords and functionalities, resulting in the identification of highlighted databases. This review serves as a reference for traditional medicine researchers to choose appropriate databases and also provides insights and considerations for the function and content design of future databases.
Collapse
Affiliation(s)
- Xiao-Lan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Qing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xuan-Jing Shen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
de Azevedo DQ, Campioni BM, Pedroz Lima FA, Medina-Franco JL, Castilho RO, Maltarollo VG. A critical assessment of bioactive compounds databases. Future Med Chem 2024; 16:1029-1051. [PMID: 38910575 PMCID: PMC11221550 DOI: 10.1080/17568919.2024.2342203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/03/2024] [Indexed: 06/25/2024] Open
Abstract
Compound databases (DBs) are essential tools for drug discovery. The number of DBs in public domain is increasing, so it is important to analyze these DBs. In this article, the main characteristics of 64 DBs will be presented. The methodological strategy used was a literature search. To analyze the characteristics obtained in the review, the DBs were categorized into two subsections: Open Access and Commercial DBs. Open access includes generalist DBs (containing compounds of diverse origins), DBs with specific applicability, DBs exclusive to natural products and those containing compounds with specific pharmacological action. The literature review showed that there are challenges to making these repositories available, such as standardizing information curation practices and funding to maintain and sustain them.
Collapse
Affiliation(s)
- Daniela Quadros de Azevedo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - Beatriz Mattos Campioni
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - Felipe Augusto Pedroz Lima
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| | - Rachel Oliveira Castilho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, 31270-900, Brazil
| |
Collapse
|
3
|
Domingo-Fernández D, Gadiya Y, Mubeen S, Bollerman TJ, Healy MD, Chanana S, Sadovsky RG, Healey D, Colluru V. Modern drug discovery using ethnobotany: A large-scale cross-cultural analysis of traditional medicine reveals common therapeutic uses. iScience 2023; 26:107729. [PMID: 37701812 PMCID: PMC10494464 DOI: 10.1016/j.isci.2023.107729] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
For millennia, numerous cultures and civilizations have relied on traditional remedies derived from plants to treat a wide range of conditions and ailments. Here, we systematically analyzed ethnobotanical patterns across taxonomically related plants, demonstrating that congeneric medicinal plants are more likely to be used for treating similar indications. Next, we reconstructed the phytochemical space covered by medicinal plants to reveal that (i) taxonomically related medicinal plants cover a similar phytochemical space, and (ii) chemical similarity correlates with similar therapeutic usage. Lastly, we present several case scenarios illustrating how mining this information can be used for drug discovery applications, including: (i) investigating taxonomic hotspots around particular indications, (ii) exploring shared patterns of congeneric plants located in different geographic areas, but which have been used to treat the same indications, and (iii) showing the concordance between ethnobotanical patterns among non-taxonomically related plants and the presence of shared bioactive phytochemicals.
Collapse
|
4
|
Nguyen HD, Vu MT, Do HDK. The complete chloroplast genome of Syzygium polyanthum (Wight) Walp. (Myrtales: Myrtaceae). JOURNAL OF ASIA-PACIFIC BIODIVERSITY 2023. [DOI: 10.1016/j.japb.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
5
|
Fathifar Z, Kalankesh LR, Ostadrahimi A, Ferdousi R. New approaches in developing medicinal herbs databases. Database (Oxford) 2023; 2023:6980759. [PMID: 36625159 PMCID: PMC9830469 DOI: 10.1093/database/baac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/12/2022] [Accepted: 12/17/2022] [Indexed: 01/11/2023]
Abstract
Medicinal herbs databases have become a crucial part of organizing new scientific literature generated in medicinal herbs field, as well as new drug discoveries in the information era. The aim of this review was to track the current status of medicinal herbs databases. Search for finding medicinal herbs databases was carried out via Google and PubMed. PubMed was searched for papers introducing medicinal herbs databases by the recruited search strategy. Papers with an active database on the web were included in the review. Google was also searched for medicinal herbs databases. Both retrieved papers and databases were reviewed by the authors. In this review, the current status of 25 medicinal herbs databases was reviewed, and the important characteristics of databases were mentioned. The reviewed databases had a great variety in terms of characteristics and functions. Finally, some recommendations for the efficient development of medicinal herbs databases were suggested. Although contemporary medicinal herbs databases represent much useful information, adding some features to these databases could assist them to have better functionality. This work may not cover all the necessary information, but we hope that our review can provide readers with fundamental concepts, perspectives and suggestions for constructing more useful databases.
Collapse
Affiliation(s)
- Zahra Fathifar
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Daneshgah St., Tabriz 5165665811, Iran
| | - Leila R Kalankesh
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Daneshgah St., Tabriz 5165665811, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz /Ave. Golghast Atakar Neyshabouri, Tabriz 5166614711, Iran
| | | |
Collapse
|
6
|
Comparative analysis of an anthraquinone and chalcone derivatives-based virtual combinatorial library. A cheminformatics "proof-of-concept" study. J Mol Graph Model 2022; 117:108307. [PMID: 36096064 DOI: 10.1016/j.jmgm.2022.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 01/14/2023]
Abstract
A Laplacian scoring algorithm for gene selection and the Gini coefficient to identify the genes whose expression varied least across a large set of samples were the state-of-the-art methods used here. These methods have not been trialed for their feasibility in cheminformatics. This was a maiden attempt to investigate a complete comparative analysis of an anthraquinone and chalcone derivatives-based virtual combinatorial library. This computational "proof-of-concept" study illustrated the combinatorial approach used to explain how the structure of the selected natural products (NPs) undergoes molecular diversity analysis. A virtual combinatorial library (1.6 M) based on 20 anthraquinones and 24 chalcones was enumerated. The resulting compounds were optimized to the near drug-likeness properties, and the physicochemical descriptors were calculated for all datasets including FDA, Non-FDA, and NPs from ZINC 15. UMAP and PCA were applied to compare and represent the chemical space coverage of each dataset. Subsequently, the Laplacian score and Gini coefficient were applied to delineate feature selection and selectivity among properties, respectively. Finally, we demonstrated the diversity between the datasets by employing Murcko's and the central scaffolds systems, calculating three fingerprint descriptors and analyzing their diversity by PCA and SOM. The optimized enumeration resulted in 1,610,268 compounds with NP-Likeness, and synthetic feasibility mean scores close to FDA, Non-FDA, and NPs datasets. The overlap between the chemical space of the 1.6 M database was more prominent than with the NPs dataset. A Laplacian score prioritized NP-likeness and hydrogen bond acceptor properties (1.0 and 0.923), respectively, while the Gini coefficient showed that all properties have selective effects on datasets (0.81-0.93). Scaffold and fingerprint diversity indicated that the descending order for the tested datasets was FDA, Non-FDA, NPs and 1.6 M. Virtual combinatorial libraries based on NPs can be considered as a source of the combinatorial compound with NP-likeness properties. Furthermore, measuring molecular diversity is supposed to be performed by different methods to allow for comparison and better judgment.
Collapse
|
7
|
Penicillium digitatum as a Model Fungus for Detecting Antifungal Activity of Botanicals: An Evaluation on Vietnamese Medicinal Plant Extracts. J Fungi (Basel) 2022; 8:jof8090956. [PMID: 36135681 PMCID: PMC9502062 DOI: 10.3390/jof8090956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
Medicinal plants play important roles in traditional medicine, and numerous compounds among them have been recognized for their antimicrobial activity. However, little is known about the potential of Vietnamese medicinal plants for antifungal activity. In this study, we examined the antagonistic activity of twelve medicinal plant species collected in Northern Vietnam against Penicillium digitatum, Aspergillus flavus, Aspergillus fumigatus, and Candida albicans. The results showed that the antifungal activities of the crude extracts from Mahonia bealei, Ficus semicordata, and Gnetum montanum were clearly detected with the citrus postharvest pathogen P. digitatum. These extracts could fully inhibit the growth of P. digitatum on the agar medium, and on the infected citrus fruits at concentrations of 300–1000 µg/mL. Meanwhile, the other tested fungi were less sensitive to the antagonistic activity of the plant extracts. In particular, we found that the ethanolic extract of M. bealei displayed a broad-spectrum antifungal activity against all four pathogenic fungi. Analysis of this crude extract by enrichment coupled with high-performance liquid chromatography revealed that berberine and palmatine are major metabolites. Additional inspections indicated berberine as the key compound responsible for the antifungal activity of the M. bealei ethanolic extract. Our study provides a better understanding of the potential of Vietnamese medicinal plant resources for combating fungal pathogens. This work also highlights that the citrus pathogen P. digitatum can be employed as a model fungus for screening the antifungal activity of botanicals.
Collapse
|
8
|
de Oliveira MVD, Bittencourt Fernandes GM, da Costa KS, Vakal S, Lima AH. Virtual screening of natural products against 5-enolpyruvylshikimate-3-phosphate synthase using the Anagreen herbicide-like natural compound library. RSC Adv 2022; 12:18834-18847. [PMID: 35873314 PMCID: PMC9240924 DOI: 10.1039/d2ra02645g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes a reaction involved in the production of amino acids essential for plant growth and survival. EPSPS is the main target of glyphosate, a broad-spectrum herbicide that acts as a competitive inhibitor concerning phosphoenolpyruvate (PEP), which is the natural substrate of EPSPS. In the present study, we introduce a natural compound library, named Anagreen, which is a compendium of herbicide-like compounds obtained from different natural product databases. Herein, we combined the structure- and ligand-based virtual screening strategies to explore Anagreen against EPSPS using the structure of glyphosate complexed with a T102I/P106S mutant of EPSPS from Eleusine indica (EiEPSPS) as a starting point. First, ligand-based pharmacophore screening was performed to select compounds with a similar pharmacophore to glyphosate. Then, structure-based pharmacophore modeling was applied to build a model which represents the molecular features of glyphosate. Then, consensus docking was performed to rank the best poses of the natural compounds against the PEP binding site, and then molecular dynamics simulations were performed to analyze the stability of EPSPS complexed with the selected ligands. Finally, we have investigated the binding affinity of the complexes using free energy calculations. The selected hit compound, namely AG332841, showed a stable conformation and binding affinity to the EPSPS structure and showed no structural similarity to the already known weed EPSPS inhibitors. Our computational study aims to clarify the inhibition of the mutant EiEPSPS, which is resistant to glyphosate, and identify new potential herbicides from natural products.
Collapse
Affiliation(s)
- Maycon Vinicius Damasceno de Oliveira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará 66075-110 Belém Pará Brazil
| | - Gilson Mateus Bittencourt Fernandes
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará 66075-110 Belém Pará Brazil
| | - Kauê S da Costa
- Institute of Biodiversity, Federal University of Western Pará Santarém Pará Brazil
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University Turku Finland
| | - Anderson H Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará 66075-110 Belém Pará Brazil
| |
Collapse
|
9
|
Thai QM, Pham TNH, Hiep DM, Pham MQ, Tran PT, Nguyen TH, Ngo ST. Searching for AChE inhibitors from natural compounds by using machine learning and atomistic simulations. J Mol Graph Model 2022; 115:108230. [DOI: 10.1016/j.jmgm.2022.108230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
|
10
|
Nguyen L, Nguyen Vo TH, Trinh QH, Nguyen BH, Nguyen-Hoang PU, Le L, Nguyen BP. iANP-EC: Identifying Anticancer Natural Products Using Ensemble Learning Incorporated with Evolutionary Computation. J Chem Inf Model 2022; 62:5080-5089. [PMID: 35157472 DOI: 10.1021/acs.jcim.1c00920] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most deadly diseases that annually kills millions of people worldwide. The investigation on anticancer medicines has never ceased to seek better and more adaptive agents with fewer side effects. Besides chemically synthetic anticancer compounds, natural products are scientifically proved as a highly potential alternative source for anticancer drug discovery. Along with experimental approaches being used to find anticancer drug candidates, computational approaches have been developed to virtually screen for potential anticancer compounds. In this study, we construct an ensemble computational framework, called iANP-EC, using machine learning approaches incorporated with evolutionary computation. Four learning algorithms (k-NN, SVM, RF, and XGB) and four molecular representation schemes are used to build a set of classifiers, among which the top-four best-performing classifiers are selected to form an ensemble classifier. Particle swarm optimization (PSO) is used to optimise the weights used to combined the four top classifiers. The models are developed by a set of curated 997 compounds which are collected from the NPACT and CancerHSP databases. The results show that iANP-EC is a stable, robust, and effective framework that achieves an AUC-ROC value of 0.9193 and an AUC-PR value of 0.8366. The comparative analysis of molecular substructures between natural anticarcinogens and nonanticarcinogens partially unveils several key substructures that drive anticancerous activities. We also deploy the proposed ensemble model as an online web server with a user-friendly interface to support the research community in identifying natural products with anticancer activities.
Collapse
Affiliation(s)
- Loc Nguyen
- Computational Biology Center, International University - VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Thanh-Hoang Nguyen Vo
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Quang H Trinh
- Computational Biology Center, International University - VNU HCMC, Ho Chi Minh City 700000, Vietnam.,School of Information and Communication Technology, Hanoi University of Science and Technology, Hanoi 100000, Vietnam
| | - Bach Hoai Nguyen
- School of Engineering and Computer Science, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Phuong-Uyen Nguyen-Hoang
- Computational Biology Center, International University - VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Ly Le
- Computational Biology Center, International University - VNU HCMC, Ho Chi Minh City 700000, Vietnam.,Vingroup Big Data Institute, Ha Noi 100000, Vietnam
| | - Binh P Nguyen
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
11
|
In silico screening of potential β-secretase (BACE1) inhibitors from VIETHERB database. J Mol Model 2022; 28:60. [DOI: 10.1007/s00894-022-05051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022]
|
12
|
Nguyen-Vo TH, Trinh QH, Nguyen L, Nguyen-Hoang PU, Nguyen TN, Nguyen DT, Nguyen BP, Le L. iCYP-MFE: Identifying Human Cytochrome P450 Inhibitors Using Multitask Learning and Molecular Fingerprint-Embedded Encoding. J Chem Inf Model 2021; 62:5059-5068. [PMID: 34672553 DOI: 10.1021/acs.jcim.1c00628] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The human cytochrome P450 (CYP) superfamily holds responsibilities for the metabolism of both endogenous and exogenous compounds such as drugs, cellular metabolites, and toxins. The inhibition exerted on the CYP enzymes is closely associated with adverse drug reactions encompassing metabolic failures and induced side effects. In modern drug discovery, identification of potential CYP inhibitors is, therefore, highly essential. Alongside experimental approaches, numerous computational models have been proposed to address this biochemical issue. In this study, we introduce iCYP-MFE, a computational framework for virtual screening on CYP inhibitors toward 1A2, 2C9, 2C19, 2D6, and 3A4 isoforms. iCYP-MFE contains a set of five robust, stable, and effective prediction models developed using multitask learning incorporated with molecular fingerprint-embedded features. The results show that multitask learning can remarkably leverage useful information from related tasks to promote global performance. Comparative analysis indicates that iCYP-MFE achieves three predominant tasks, one equivalent task, and one less effective task compared to state-of-the-art methods. The area under the receiver operating characteristic curve (AUC-ROC) and the area under the precision-recall curve (AUC-PR) were two decisive metrics used for model evaluation. The prediction task for CYP2D6-inhibition achieves the highest AUC-ROC value of 0.93 while the prediction task for CYP1A2-inhibition obtains the highest AUC-PR value of 0.92. The substructural analysis preliminarily explains the nature of the CYP-inhibitory activity of compounds. An online web server for iCYP-MFE with a user-friendly interface was also deployed to support scientific communities in identifying CYP inhibitors.
Collapse
Affiliation(s)
- Thanh-Hoang Nguyen-Vo
- School of Mathematics and Statistics, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand
| | - Quang H Trinh
- Computational Biology Center, International University-VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Loc Nguyen
- Computational Biology Center, International University-VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Phuong-Uyen Nguyen-Hoang
- Computational Biology Center, International University-VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Thien-Ngan Nguyen
- Computational Biology Center, International University-VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Dung T Nguyen
- School of Information and Communication Technology, Hanoi University of Science and Technology, Hanoi 100000, Vietnam
| | - Binh P Nguyen
- School of Mathematics and Statistics, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand
| | - Ly Le
- Computational Biology Center, International University-VNU HCMC, Ho Chi Minh City 700000, Vietnam.,Vingroup Big Data Institute, Ha Noi 100000, Vietnam
| |
Collapse
|
13
|
Sun X, Zhang Y, Zhou Y, Lian X, Yan L, Pan T, Jin T, Xie H, Liang Z, Qiu W, Wang J, Li Z, Zhu F, Sui X. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Res 2021; 50:D1324-D1333. [PMID: 34664659 PMCID: PMC8728151 DOI: 10.1093/nar/gkab913] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 01/15/2023] Open
Abstract
Natural product (NP) has a long history in promoting modern drug discovery, which has derived or inspired a large number of currently prescribed drugs. Recently, the NPs have emerged as the ideal candidates to combine with other therapeutic strategies to deal with the persistent challenge of conventional therapy, and the molecular regulation mechanism underlying these combinations is crucial for the related communities. Thus, it is urgently demanded to comprehensively provide the disease-specific molecular regulation data for various NP-based drug combinations. However, no database has been developed yet to describe such valuable information. In this study, a newly developed database entitled ‘Natural Product-based Drug Combination and Its Disease-specific Molecular Regulation (NPCDR)’ was thus introduced. This database was unique in (a) providing the comprehensive information of NP-based drug combinations & describing their clinically or experimentally validated therapeutic effect, (b) giving the disease-specific molecular regulation data for a number of NP-based drug combinations, (c) fully referencing all NPs, drugs, regulated molecules/pathways by cross-linking them to the available databases describing their biological or pharmaceutical characteristics. Therefore, NPCDR is expected to have great implications for the future practice of network pharmacology, medical biochemistry, drug design, and medicinal chemistry. This database is now freely accessible without any login requirement at both official (https://idrblab.org/npcdr/) and mirror (http://npcdr.idrblab.net/) sites.
Collapse
Affiliation(s)
- Xueni Sun
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yintao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lili Yan
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Pan
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Jin
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Han Xie
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Zimao Liang
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenqi Qiu
- Department of Surgery, HKU-SZH & Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Xinbing Sui
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
14
|
In vitro antiviral activities of ethanol and aqueous extracts of Vietnamese traditional medicinal plants against Porcine Epidemic Diarrhea virus: a coronavirus family member. Virusdisease 2021; 32:797-803. [PMID: 34189185 PMCID: PMC8221279 DOI: 10.1007/s13337-021-00709-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/11/2021] [Indexed: 01/01/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes diarrhea in pigs leading to severe illnesses and high mortality rates. The development of medicinal agents to treat PEDV infection is therefore crucial. In this study, antiviral activities against PEDV of ethanol and aqueous extracts of 17 Vietnamese traditional medicinal plants were evaluated using the cytopathic effect-based assay. The results showed that 14 out of 17 medicinal plants could inhibit the cytopathic effect of PEDV. The ethanol extract of Stixis scandens was identified as the most active extract with its MIC (minimum inhibitory concentration) being 0.15 μg/mL. Other plant extracts also displayed strong antiviral activity against PEDV, including Anisomeles indica, Pericampylus glaucus and Croton kongensis. The results demonstrate that certain medicinal plants have a high antiviral potential and may serve as a lead to develop novel pharmaceutical agents to cure PED as well as the diseases caused by other coronaviruses.
Collapse
|
15
|
Jin Y, Wang Z, Dong AY, Huang YQ, Hao GF, Song BA. Web repositories of natural agents promote pests and pathogenic microbes management. Brief Bioinform 2021; 22:6294160. [PMID: 34098581 DOI: 10.1093/bib/bbab205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
The grand challenge to meet the increasing demands for food by a rapidly growing global population requires protecting crops from pests. Natural active substances play a significant role in the sustainable pests and pathogenic microbes management. In recent years, natural products- (NPs), antimicrobial peptides- (AMPs), medicinal plant- and plant essential oils (EOs)-related online resources have greatly facilitated the development of pests and pathogenic microbes control agents in an efficient and economical manner. However, a comprehensive comparison, analysis and summary of these existing web resources are still lacking. Here, we surveyed these databases of NPs, AMPs, medicinal plants and plant EOs with insecticidal, antibacterial, antiviral and antifungal activity, and we compared their functionality, data volume, data sources and applicability. We comprehensively discussed the limitation of these web resources. This study provides a toolbox for bench scientists working in the pesticide, botany, biomedical and pharmaceutical engineering fields. The aim of the review is to hope that these web resources will facilitate the discovery and development of potential active ingredients of pests and pathogenic microbes control agents.
Collapse
Affiliation(s)
- Yin Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Zheng Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - An-Yu Dong
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yuan-Qin Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Bao-An Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
16
|
Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C. COCONUT online: Collection of Open Natural Products database. J Cheminform 2021; 13:2. [PMID: 33423696 PMCID: PMC7798278 DOI: 10.1186/s13321-020-00478-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
Natural products (NPs) are small molecules produced by living organisms with potential applications in pharmacology and other industries as many of them are bioactive. This potential raised great interest in NP research around the world and in different application fields, therefore, over the years a multiplication of generalistic and thematic NP databases has been observed. However, there is, at this moment, no online resource regrouping all known NPs in just one place, which would greatly simplify NPs research and allow computational screening and other in silico applications. In this manuscript we present the online version of the COlleCtion of Open Natural prodUcTs (COCONUT): an aggregated dataset of elucidated and predicted NPs collected from open sources and a web interface to browse, search and easily and quickly download NPs. COCONUT web is freely available at https://coconut.naturalproducts.net .
Collapse
Affiliation(s)
- Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, University Friedrich-Schiller, Lessing Strasse 8, 07743 Jena, Germany
| | - Peter Merseburger
- Institute for Inorganic and Analytical Chemistry, University Friedrich-Schiller, Lessing Strasse 8, 07743 Jena, Germany
| | - Kohulan Rajan
- Institute for Inorganic and Analytical Chemistry, University Friedrich-Schiller, Lessing Strasse 8, 07743 Jena, Germany
| | - Mehmet Aziz Yirik
- Institute for Inorganic and Analytical Chemistry, University Friedrich-Schiller, Lessing Strasse 8, 07743 Jena, Germany
| | - Christoph Steinbeck
- Institute for Inorganic and Analytical Chemistry, University Friedrich-Schiller, Lessing Strasse 8, 07743 Jena, Germany
| |
Collapse
|
17
|
Ngo ST, Quynh Anh Pham N, Thi Le L, Pham DH, Vu VV. Computational Determination of Potential Inhibitors of SARS-CoV-2 Main Protease. J Chem Inf Model 2020; 60:5771-5780. [PMID: 32530282 PMCID: PMC7323056 DOI: 10.1021/acs.jcim.0c00491] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The novel coronavirus (SARS-CoV-2) has infected several million people and caused thousands of deaths worldwide since December 2019. As the disease is spreading rapidly all over the world, it is urgent to find effective drugs to treat the virus. The main protease (Mpro) of SARS-CoV-2 is one of the potential drug targets. Therefore, in this context, we used rigorous computational methods, including molecular docking, fast pulling of ligand (FPL), and free energy perturbation (FEP), to investigate potential inhibitors of SARS-CoV-2 Mpro. We first tested our approach with three reported inhibitors of SARS-CoV-2 Mpro, and our computational results are in good agreement with the respective experimental data. Subsequently, we applied our approach on a database of ∼4600 natural compounds, as well as 8 available HIV-1 protease (PR) inhibitors and an aza-peptide epoxide. Molecular docking resulted in a short list of 35 natural compounds, which was subsequently refined using the FPL scheme. FPL simulations resulted in five potential inhibitors, including three natural compounds and two available HIV-1 PR inhibitors. Finally, FEP, the most accurate and precise method, was used to determine the absolute binding free energy of these five compounds. FEP results indicate that two natural compounds, cannabisin A and isoacteoside, and an HIV-1 PR inhibitor, darunavir, exhibit a large binding free energy to SARS-CoV-2 Mpro, which is larger than that of 13b, the most reliable SARS-CoV-2 Mpro inhibitor recently reported. The binding free energy largely arises from van der Waals interaction. We also found that Glu166 forms H-bonds to all of the inhibitors. Replacing Glu166 by an alanine residue leads to ∼2.0 kcal/mol decreases in the affinity of darunavir to SARS-CoV-2 Mpro. Our results could contribute to the development of potential drugs inhibiting SARS-CoV-2.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and
Computational Biophysics, Ton Duc Thang
University, Ho Chi Minh City 700000,
Vietnam
- Faculty of Applied Sciences,
Ton Duc Thang University, Ho Chi Minh
City 700000, Vietnam
| | - Ngoc Quynh Anh Pham
- Faculty of Chemical Engineering,
Ho Chi Minh City University of Technology
(HCMUT), Ho Chi Minh City 700000,
Vietnam
| | - Ly Thi Le
- School of Biotechnology,
International University, Ho Chi Minh
Ciy 700000, Vietnam
| | - Duc-Hung Pham
- Division of Immunobiology,
Cincinnati Children’s Hospital Medical
Center, Cincinnati, Ohio 45229, United
States
| | - Van V. Vu
- NTT Hi-Tech Institute, Nguyen
Tat Thanh University, Ho Chi Minh City 700000,
Vietnam
| |
Collapse
|
18
|
Le K, Tran D, Nguyen A, Le L. A Screening of Neuraminidase Inhibition Activities of Isoquinolone Alkaloids in Coptis chinensis Using Molecular Docking and Pharmacophore Analysis. ACS OMEGA 2020; 5:30315-30322. [PMID: 33251466 PMCID: PMC7689928 DOI: 10.1021/acsomega.0c04847] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/26/2020] [Indexed: 05/05/2023]
Abstract
Coptis chinensis has been long used as the potential herbal remedy for the treatment of influenza A infection. The six isoquinolone alkaloids extracted from C. chinensis rhizomes are reported to have good inhibition activity on neuraminidase (NA) of Clostridium perfringens, A/H1N1/1918, and recombinant NA-1; however, the study of the effect of these candidates on other NAs of threatening influenza A causing pandemic and seasonal flu recently has not considered yet. The purpose of this study is to investigate the interaction between these compounds and NAs of different wild and mutant subtypes of influenza A. This process involved the molecular docking of 3D structures of those compounds (ligand) into target proteins NA of A/H1N1/1918, A/H1N1/2009pdm, H3N2/2010 wild type, H3N2/2010 D151G mutant, H5N1 wild type, and H5N1 H274Y mutant. Then, the Protein-Ligand Interaction Profiler (PLIP) was utilized to demonstrate the bond formed between the ligand and the binding pocket of receptors of interest. The results showed that six candidates including palmatine, berberine, jatrorrhizine, epiberberine, columbamine, and coptisine have a higher affinity to all six selected proteins than commercial drugs such as oseltamivir, zanamivir, and natural binding ligand sialic acid. The results could be explained via the 2D picture, which showed the hydrophobic interaction and hydrogen bonding forming between the oxygen molecules of the ligand with the free residue of proteins.
Collapse
|
19
|
Tran N, Pham B, Le L. Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery. BIOLOGY 2020; 9:E252. [PMID: 32872226 PMCID: PMC7563488 DOI: 10.3390/biology9090252] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022]
Abstract
Natural products, including organisms (plants, animals, or microorganisms) have been shown to possess health benefits for animals and humans. According to the estimation of the World Health Organization, in developing countries, 80% of the population has still depended on traditional medicines or folk medicines which are mostly prepared from the plant for prevention or treatment diseases. Traditional medicine from plant extracts has proved to be more affordable, clinically effective and relatively less adverse effects than modern drugs. Literature shows that the attention on the application of phytochemical constituents of medicinal plants in the pharmaceutical industry has increased significantly. Plant-derived secondary metabolites are small molecules or macromolecules biosynthesized in plants including steroids, alkaloids, phenolic, lignans, carbohydrates and glycosides, etc. that possess a diversity of biological properties beneficial to humans, such as their antiallergic, anticancer, antimicrobial, anti-inflammatory, antidiabetic and antioxidant activities Diabetes mellitus is a chronic disease result of metabolic disorders in pancreas β-cells that have hyperglycemia. Hyperglycemia can be caused by a deficiency of insulin production by pancreatic (Type 1 diabetes mellitus) or insufficiency of insulin production in the face of insulin resistance (Type 2 diabetes mellitus). The current medications of diabetes mellitus focus on controlling and lowering blood glucose levels in the vessel to a normal level. However, most modern drugs have many side effects causing some serious medical problems during a period of treating. Therefore, traditional medicines have been used for a long time and play an important role as alternative medicines. Moreover, during the past few years, some of the new bioactive drugs isolated from plants showed antidiabetic activity with more efficacy than oral hypoglycemic agents used in clinical therapy. Traditional medicine performed a good clinical practice and is showing a bright future in the therapy of diabetes mellitus. World Health Organization has pointed out this prevention of diabetes and its complications is not only a major challenge for the future, but essential if health for all is to be attained. Therefore, this paper briefly reviews active compounds, and pharmacological effects of some popular plants which have been widely used in diabetic treatment. Morphological data from V-herb database of each species was also included for plant identification.
Collapse
Affiliation(s)
- Ngan Tran
- School of Biotechnology, International University—Vietnam National University, Ho Chi Minh City 721400, Vietnam;
| | - Bao Pham
- Information Science Faculty, Saigon University, Ho Chi Minh City 711000, Vietnam;
| | - Ly Le
- School of Biotechnology, International University—Vietnam National University, Ho Chi Minh City 721400, Vietnam;
| |
Collapse
|
20
|
An enumeration of natural products from microbial, marine and terrestrial sources. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
The discovery of a new drug is a multidisciplinary and very costly task. One of the major steps is the identification of a lead compound, i.e. a compound with a certain degree of potency and that can be chemically modified to improve its activity, metabolic properties, and pharmacokinetics profiles. Terrestrial sources (plants and fungi), microbes and marine organisms are abundant resources for the discovery of new structurally diverse and biologically active compounds. In this chapter, an attempt has been made to quantify the numbers of known published chemical structures (available in chemical databases) from natural sources. Emphasis has been laid on the number of unique compounds, the most abundant compound classes and the distribution of compounds in terrestrial and marine habitats. It was observed, from the recent investigations, that ~500,000 known natural products (NPs) exist in the literature. About 70 % of all NPs come from plants, terpenoids being the most represented compound class (except in bacteria, where amino acids, peptides, and polyketides are the most abundant compound classes). About 2,000 NPs have been co-crystallized in PDB structures.
Collapse
|
21
|
Sorokina M, Steinbeck C. Review on natural products databases: where to find data in 2020. J Cheminform 2020; 12:20. [PMID: 33431011 PMCID: PMC7118820 DOI: 10.1186/s13321-020-00424-9] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/22/2020] [Indexed: 02/06/2023] Open
Abstract
Natural products (NPs) have been the centre of attention of the scientific community in the last decencies and the interest around them continues to grow incessantly. As a consequence, in the last 20 years, there was a rapid multiplication of various databases and collections as generalistic or thematic resources for NP information. In this review, we establish a complete overview of these resources, and the numbers are overwhelming: over 120 different NP databases and collections were published and re-used since 2000. 98 of them are still somehow accessible and only 50 are open access. The latter include not only databases but also big collections of NPs published as supplementary material in scientific publications and collections that were backed up in the ZINC database for commercially-available compounds. Some databases, even published relatively recently are already not accessible anymore, which leads to a dramatic loss of data on NPs. The data sources are presented in this manuscript, together with the comparison of the content of open ones. With this review, we also compiled the open-access natural compounds in one single dataset a COlleCtion of Open NatUral producTs (COCONUT), which is available on Zenodo and contains structures and sparse annotations for over 400,000 non-redundant NPs, which makes it the biggest open collection of NPs available to this date.
Collapse
Affiliation(s)
- Maria Sorokina
- University Friedrich-Schiller, Lessing Strasse 8, 07743 Jena, Germany
| | | |
Collapse
|
22
|
Nguyen-Vo TH, Nguyen L, Do N, Nguyen TN, Trinh K, Cao H, Le L. Plant Metabolite Databases: From Herbal Medicines to Modern Drug Discovery. J Chem Inf Model 2020; 60:1101-1110. [PMID: 31873010 DOI: 10.1021/acs.jcim.9b00826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Traditional herbal medicine has been an inseparable part of the traditional medical science in many countries throughout history. Nowadays, the popularity of using herbal medicines in daily life, as well as clinical practices, has gradually expanded to numerous Western countries with positive impacts and acceptance. The continuous growth of the herbal consumption market has promoted standardization and modernization of herbal-derived products with present pharmacological criteria. To store and extensively share this knowledge with the community and serve scientific research, various herbal metabolite databases have been developed with diverse focuses under the support of modern advances. The advent of these databases has contributed to accelerating research on pharmaceuticals of natural origins. In the scope of this study, we critically review 30 herbal metabolite databases, discuss different related perspectives, and provide a comparative analysis of 18 accessible noncommercial ones. We hope to provide you with fundamental information and multidimensional perspectives from herbal medicines to modern drug discovery.
Collapse
Affiliation(s)
- Thanh-Hoang Nguyen-Vo
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Loc Nguyen
- Computational Biology Center, International University-VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Nguyet Do
- Computational Biology Center, International University-VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Thien-Ngan Nguyen
- Computational Biology Center, International University-VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Khang Trinh
- Computational Biology Center, International University-VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Hung Cao
- The Henry Samueli School of Engineering, University of California at Irvine, Irvine, California 92697, United States
| | - Ly Le
- Computational Biology Center, International University-VNU HCMC, Ho Chi Minh City 700000, Vietnam.,Vingroup Big Data Institute, Ha Noi 100000, Vietnam
| |
Collapse
|
23
|
Cheminformatics Explorations of Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 110:1-35. [PMID: 31621009 DOI: 10.1007/978-3-030-14632-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemistry of natural products is fascinating and has continuously attracted the attention of the scientific community for many reasons including, but not limited to, biosynthesis pathways, chemical diversity, the source of bioactive compounds and their marked impact on drug discovery. There is a broad range of experimental and computational techniques (molecular modeling and cheminformatics) that have evolved over the years and have assisted the investigation of natural products. Herein, we discuss cheminformatics strategies to explore the chemistry and applications of natural products. Since the potential synergisms between cheminformatics and natural products are vast, we will focus on three major aspects: (1) exploration of the chemical space of natural products to identify bioactive compounds, with emphasis on drug discovery; (2) assessment of the toxicity profile of natural products; and (3) diversity analysis of natural product collections and the design of chemical collections inspired by natural sources.
Collapse
|
24
|
BIOFACQUIM: A Mexican Compound Database of Natural Products. Biomolecules 2019; 9:biom9010031. [PMID: 30658522 PMCID: PMC6358837 DOI: 10.3390/biom9010031] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/28/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Abstract
Compound databases of natural products have a major impact on drug discovery projects and other areas of research. The number of databases in the public domain with compounds with natural origins is increasing. Several countries, Brazil, France, Panama and, recently, Vietnam, have initiatives in place to construct and maintain compound databases that are representative of their diversity. In this proof-of-concept study, we discuss the first version of BIOFACQUIM, a novel compound database with natural products isolated and characterized in Mexico. We discuss its construction, curation, and a complete chemoinformatic characterization of the content and coverage in chemical space. The profile of physicochemical properties, scaffold content, and diversity, as well as structural diversity based on molecular fingerprints is reported. BIOFACQUIM is available for free.
Collapse
|