• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4660166)   Today's Articles (3175)   Subscriber (51393)
For: Berenger F, Yamanishi Y. A Distance-Based Boolean Applicability Domain for Classification of High Throughput Screening Data. J Chem Inf Model 2019;59:463-476. [PMID: 30567434 DOI: 10.1021/acs.jcim.8b00499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Number Cited by Other Article(s)
1
de Oliveira LHD, Cruz JN, Dos Santos CBR, de Melo EB. Multivariate QSAR, similarity search and ADMET studies based in a set of methylamine derivatives described as dopamine transporter inhibitors. Mol Divers 2024;28:2931-2946. [PMID: 37670118 DOI: 10.1007/s11030-023-10724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/27/2023] [Indexed: 09/07/2023]
2
Kaneko H. Evaluation and Optimization Methods for Applicability Domain Methods and Their Hyperparameters, Considering the Prediction Performance of Machine Learning Models. ACS OMEGA 2024;9:11453-11458. [PMID: 38496944 PMCID: PMC10938389 DOI: 10.1021/acsomega.3c08036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
3
Han M, Jin B, Liang J, Huang C, Arp HPH. Developing machine learning approaches to identify candidate persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances based on molecular structure. WATER RESEARCH 2023;244:120470. [PMID: 37595327 DOI: 10.1016/j.watres.2023.120470] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
4
Li J, Wang C, Yue L, Chen F, Cao X, Wang Z. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022;243:113955. [PMID: 35961199 DOI: 10.1016/j.ecoenv.2022.113955] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/11/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
5
Korolev V, Nevolin I, Protsenko P. A universal similarity based approach for predictive uncertainty quantification in materials science. Sci Rep 2022;12:14931. [PMID: 36056050 PMCID: PMC9440040 DOI: 10.1038/s41598-022-19205-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022]  Open
6
Yu J, Wang D, Zheng M. Uncertainty quantification: Can we trust artificial intelligence in drug discovery? iScience 2022;25:104814. [PMID: 35996575 PMCID: PMC9391523 DOI: 10.1016/j.isci.2022.104814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]  Open
7
Wang D, Yu J, Chen L, Li X, Jiang H, Chen K, Zheng M, Luo X. A hybrid framework for improving uncertainty quantification in deep learning-based QSAR regression modeling. J Cheminform 2021;13:69. [PMID: 34544485 PMCID: PMC8454160 DOI: 10.1186/s13321-021-00551-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/05/2021] [Indexed: 11/24/2022]  Open
8
Berenger F, Yamanishi Y. Ranking Molecules with Vanishing Kernels and a Single Parameter: Active Applicability Domain Included. J Chem Inf Model 2020;60:4376-4387. [PMID: 32281797 DOI: 10.1021/acs.jcim.9b01075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
9
Computational Models Using Multiple Machine Learning Algorithms for Predicting Drug Hepatotoxicity with the DILIrank Dataset. Int J Mol Sci 2020;21:ijms21062114. [PMID: 32204453 PMCID: PMC7139829 DOI: 10.3390/ijms21062114] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]  Open
10
Ancuceanu R, Tamba B, Stoicescu CS, Dinu M. Use of QSAR Global Models and Molecular Docking for Developing New Inhibitors of c-src Tyrosine Kinase. Int J Mol Sci 2019;21:ijms21010019. [PMID: 31861445 PMCID: PMC6981969 DOI: 10.3390/ijms21010019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]  Open
11
Neural-based approaches to overcome feature selection and applicability domain in drug-related property prediction. Appl Soft Comput 2019. [DOI: 10.1016/j.asoc.2019.105777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
12
Cortés-Ciriano I, Bender A. Reliable Prediction Errors for Deep Neural Networks Using Test-Time Dropout. J Chem Inf Model 2019;59:3330-3339. [PMID: 31241929 DOI: 10.1021/acs.jcim.9b00297] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA