1
|
Sandahl TD, Gormsen LC, Kjærgaard K, Vendelbo MH, Munk DE, Munk OL, Bender D, Keiding S, Vase KH, Frisch K, Vilstrup H, Ott P. The pathophysiology of Wilson's disease visualized: A human 64 Cu PET study. Hepatology 2022; 75:1461-1470. [PMID: 34773664 PMCID: PMC9305563 DOI: 10.1002/hep.32238] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Wilson's disease (WD) is a genetic disease with systemic accumulation of copper that leads to symptoms from the liver and brain. However, the underlying defects in copper transport kinetics are only partly understood. We sought to quantify hepatic copper turnover in patients with WD compared with heterozygote and control subjects using PET with copper-64 (64 Cu) as a tracer. Furthermore, we assessed the diagnostic potential of the method. APPROACH AND RESULTS Nine patients with WD, 5 healthy heterozygote subjects, and 8 healthy controls were injected with an i.v. bolus of 64 Cu followed by a 90-min dynamic PET scan of the liver and static whole-body PET/CT scans after 1.5, 6, and 20 h. Blood 64 Cu concentrations were measured in parallel. Hepatic copper retention and redistribution were evaluated by standardized uptake values (SUVs). At 90 min, hepatic SUVs were similar in the three groups. In contrast, at 20 h postinjection, the SUV in WD patients (mean ± SEM, 31 ± 4) was higher than in heterozygotes (24 ± 3) and controls (21 ± 4; p < 0.001). An SUV-ratio of hepatic 64 Cu concentration at 20 and 1.5 h completely discriminated between WD patients and control groups (p < 0.0001; ANOVA). By Patlak analysis of the initial 90 min of the PET scan, the steady-state hepatic clearance of 64 Cu was estimated to be slightly lower in patients with WD than in controls (p = 0.04). CONCLUSIONS 64 Cu PET imaging enables visualization and quantification of the hepatic copper retention characteristic for WD patients. This method represents a valuable tool for future studies of WD pathophysiology, and may assist the development of therapies, and accurate diagnosis.
Collapse
Affiliation(s)
| | - Lars C. Gormsen
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Kristoffer Kjærgaard
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Mikkel Holm Vendelbo
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Ditte Emilie Munk
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Dirk Bender
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Susanne Keiding
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Karina H. Vase
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Kim Frisch
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Hendrik Vilstrup
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
| | - Peter Ott
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
| |
Collapse
|
2
|
Xiao F, Zhou Z, Song X, Gan M, Long J, Verkhivker G, Hu G. Dissecting mutational allosteric effects in alkaline phosphatases associated with different Hypophosphatasia phenotypes: An integrative computational investigation. PLoS Comput Biol 2022; 18:e1010009. [PMID: 35320273 PMCID: PMC8979438 DOI: 10.1371/journal.pcbi.1010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
Hypophosphatasia (HPP) is a rare inherited disorder characterized by defective bone mineralization and is highly variable in its clinical phenotype. The disease occurs due to various loss-of-function mutations in ALPL, the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). In this work, a data-driven and biophysics-based approach is proposed for the large-scale analysis of ALPL mutations-from nonpathogenic to severe HPPs. By using a pipeline of synergistic approaches including sequence-structure analysis, network modeling, elastic network models and atomistic simulations, we characterized allosteric signatures and effects of the ALPL mutations on protein dynamics and function. Statistical analysis of molecular features computed for the ALPL mutations showed a significant difference between the control, mild and severe HPP phenotypes. Molecular dynamics simulations coupled with protein structure network analysis were employed to analyze the effect of single-residue variation on conformational dynamics of TNSALP dimers, and the developed machine learning model suggested that the topological network parameters could serve as a robust indicator of severe mutations. The results indicated that the severity of disease-associated mutations is often linked with mutation-induced modulation of allosteric communications in the protein. This study suggested that ALPL mutations associated with mild and more severe HPPs can exert markedly distinct effects on the protein stability and long-range network communications. By linking the disease phenotypes with dynamic and allosteric molecular signatures, the proposed integrative computational approach enabled to characterize and quantify the allosteric effects of ALPL mutations and role of allostery in the pathogenesis of HPPs.
Collapse
Affiliation(s)
- Fei Xiao
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Ziyun Zhou
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xingyu Song
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mi Gan
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jie Long
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Gennady Verkhivker
- Department of Computational and Data Sciences, Chapman University, One University Drive, Orange, California, United States of America
- Department of Biomedical and Pharmaceutical Sciences, Chapman University Pharmacy School 9401 Jeronimo Rd, Irvine, California, United States of America
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- * E-mail:
| |
Collapse
|
3
|
Yamaguchi H, Nagase H, Tokumoto S, Tomioka K, Nishiyama M, Takeda H, Ninchoji T, Nagano C, Iijima K, Nozu K. Prevalence of Wilson disease based on genome databases in Japan. Pediatr Int 2021; 63:918-922. [PMID: 33260258 DOI: 10.1111/ped.14565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/21/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Wilson disease (WD) is an autosomal recessive disorder caused by mutations in the ATP7B gene. In 1984, Scheinberg and Sternlieb estimated the prevalence of WD to be 1:30 000. However, recent epidemiological studies have reported increasing prevalence rates in different populations. The carrier frequency of ATP7B variants and the prevalence of WD in the Japanese population have not been reported using multiple databases. METHODS Multiple public databases were used. First, we included mutations in the ATP7B gene that were registered in the Human Gene Mutation Database (HGMD) Professional, where 885 ATP7B variants were identified as pathogenic. Next, we investigated the allele frequencies of these 885 variants in Japanese individuals using the Human Genetic Variation Database (HGVD) and the Japanese Multi Omics Reference Panel (jMorp). RESULTS Of the 885 variants of ATP7B, 7 and 12 missense and nonsense variants, zero and three splicing variants, and zero and two small deletions were found in the HGVD and in jMorp, respectively. The total allele frequencies of the ATP7B mutations were 0.011 in the HGVD and 0.014 in the jMorp. According to these data, the carrier frequencies were 0.022 (2.2%) and 0.028 (2.8%), respectively, and patient frequencies were 0.000121 (1.21/10 000 individuals) and 0.000196 (1.96/10 000 individuals), respectively. CONCLUSIONS This is the first study to report the carrier frequency of ATP7B variants and the prevalence of WD in Japan using multiple databases. The calculated prevalence of WD was comparatively higher than that of previous reports, indicating previous underdiagnosis or the existence of less severe phenotypes.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroaki Nagase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shoichi Tokumoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumi Tomioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Nishiyama
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Takeda
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Ninchoji
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
4
|
Collins CJ, Yi F, Dayuha R, Duong P, Horslen S, Camarata M, Coskun AK, Houwen RHJ, Pop TL, Zoller H, Yoo HW, Jung SW, Weiss KH, Schilsky ML, Ferenci P, Hahn SH. Direct Measurement of ATP7B Peptides Is Highly Effective in the Diagnosis of Wilson Disease. Gastroenterology 2021; 160:2367-2382.e1. [PMID: 33640437 PMCID: PMC8243898 DOI: 10.1053/j.gastro.2021.02.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/09/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Both existing clinical criteria and genetic testing have significant limitations for the diagnosis of Wilson disease (WD), often creating ambiguities in patient identification and leading to delayed diagnosis and ineffective management. ATP7B protein concentration, indicated by direct measurement of surrogate peptides from patient dried blood spot samples, could provide primary evidence of WD. ATP7B concentrations were measured in patient samples from diverse backgrounds, diagnostic potential is determined, and results are compared with biochemical and genetic results from individual patients. METHODS Two hundred and sixty-four samples from biorepositories at 3 international and 2 domestic academic centers and 150 normal controls were obtained after Institutional Review Board approval. Genetically or clinically confirmed WD patients with a Leipzig score >3 and obligate heterozygote (carriers) from affected family members were included. ATP7B peptide measurements were made by immunoaffinity enrichment mass spectrometry. RESULTS Two ATP7B peptides were used to measure ATP7B protein concentration. Receiver operating characteristics curve analysis generates an area under the curve of 0.98. ATP7B peptide analysis of the sequence ATP7B 887 was found to have a sensitivity of 91.2%, specificity of 98.1%, positive predictive value of 98.0%, and a negative predictive value of 91.5%. In patients with normal ceruloplasmin concentrations (>20 mg/dL), 14 of 16 (87.5%) were ATP7B-deficient. In patients without clear genetic results, 94% were ATP7B-deficient. CONCLUSIONS Quantification of ATP7B peptide effectively identified WD patients in 92.1% of presented cases and reduced ambiguities resulting from ceruloplasmin and genetic analysis. Clarity is brought to patients with ambiguous genetic results, significantly aiding in noninvasive diagnosis. A proposed diagnostic score and algorithm incorporating ATP7B peptide concentrations can be rapidly diagnostic and supplemental to current Leipzig scoring systems.
Collapse
Affiliation(s)
| | - Fan Yi
- Seattle Children's Research Institute, Seattle, Washington
| | | | - Phi Duong
- Seattle Children's Research Institute, Seattle, Washington
| | - Simon Horslen
- University of Washington School of Medicine, Seattle, Washington
| | | | - Ayse K Coskun
- Yale University School of Medicine, New Haven, Connecticut
| | - Roderick H J Houwen
- Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - Tudor L Pop
- Second Pediatric Clinic, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Heinz Zoller
- Medical University of Innsbruck, Innsbruck, Austria
| | | | - Sung Won Jung
- Gachon University School of Medicine, Incheon, Korea
| | - Karl H Weiss
- Heidelberg University Hospital, Heidelberg, Germany
| | | | | | - Si Houn Hahn
- Seattle Children's Research Institute, Seattle, Washington; University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
5
|
Wallace DF, Dooley JS. ATP7B variant penetrance explains differences between genetic and clinical prevalence estimates for Wilson disease. Hum Genet 2020; 139:1065-1075. [PMID: 32248359 DOI: 10.1007/s00439-020-02161-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
Wilson disease (WD) is a genetic disorder of copper metabolism caused by variants in the copper transporting P-type ATPase gene ATP7B. Estimates for WD population prevalence vary with 1 in 30,000 generally quoted. However, some genetic studies have reported much higher prevalence rates. The aim of this study was to estimate the population prevalence of WD and the pathogenicity/penetrance of WD variants by determining the frequency of ATP7B variants in a genomic sequence database. A catalogue of WD-associated ATP7B variants was constructed, and then, frequency information for these was extracted from the gnomAD data set. Pathogenicity of variants was assessed by (a) comparing gnomAD allele frequencies against the number of reports for variants in the WD literature and (b) using variant effect prediction algorithms. 231 WD-associated ATP7B variants were identified in the gnomAD data set, giving an initial estimated population prevalence of around 1 in 2400. After exclusion of WD-associated ATP7B variants with predicted low penetrance, the revised estimate showed a prevalence of around 1 in 20,000, with higher rates in the Asian and Ashkenazi Jewish populations. Reanalysis of other recent genetic studies using our penetrance criteria also predicted lower population prevalences for WD in the UK and France than had been reported. Our results suggest that differences in variant penetrance can explain the discrepancy between reported epidemiological and genetic prevalences of WD. They also highlight the challenge in defining penetrance when assigning causality to some ATP7B variants.
Collapse
Affiliation(s)
- Daniel F Wallace
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| | - James S Dooley
- Division of Medicine, UCL Institute for Liver and Digestive Health, University College London Medical School (Royal Free Campus), London, UK
| |
Collapse
|