1
|
Wang H, Jin W, Li Z, Guo C, Zhang L, Fu L. Targeting eukaryotic elongation factor 2 kinase (eEF2K) with small-molecule inhibitors for cancer therapy. Drug Discov Today 2024; 29:104155. [PMID: 39214495 DOI: 10.1016/j.drudis.2024.104155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is a member of the α-kinase family that is activated by calcium/calmodulin. Of note, eEF2K is crucial for regulating translation and is often highly overexpressed in malignant cells. Therefore in this review, we summarize the molecular structure of eEF2K and its oncogenic roles in cancer. Moreover, we further discuss the inhibition of eEF2K with small-molecule inhibitors and other new emerging therapeutic strategies in cancer therapy. Taken together, these inspiring findings provide new insights into a promising strategy for inhibiting eEF2K to greatly improve future cancer therapy.
Collapse
Affiliation(s)
- Huiping Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zixiang Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chuanxin Guo
- Nucleic Acid Division, Shanghai Cell Therapy Group, Shanghai 201805, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
2
|
Wang B, Zou F, Xin G, Xiang BL, Zhao JQ, Yuan SF, Zhang XL, Zhang ZH. Sodium tanshinone IIA sulphate inhibits angiogenesis in lung adenocarcinoma via mediation of miR-874/eEF-2K/TG2 axis. PHARMACEUTICAL BIOLOGY 2023; 61:868-877. [PMID: 37300283 DOI: 10.1080/13880209.2023.2204879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 03/12/2023] [Accepted: 04/14/2023] [Indexed: 06/12/2023]
Abstract
CONTEXT Sodium tanshinone IIA sulphate (STS) is a product originated from Salvia miltiorrhiza Bunge [Lamiaceae], which exerts an antitumour effect. However, the role of STS on lung adenocarcinoma (LUAD) remains unexplored. OBJECTIVE Our study explores the effect and mechanism of STS against LUAD. MATERIALS AND METHODS LUAD cells were treated with 100 μM STS for 24 h and control group cells were cultured under normal medium conditions. Functionally, the viability, migration, invasion and angiogenesis of LUAD cells were examined by MTT, wound healing, transwell and tube formation assay, respectively. Moreover, cells were transvected with different transfection plasmids. Dual luciferase reporter and RNA immunoprecipitation (RIP) assays were used to verify the relationship between miR-874 and eEF-2K. RESULTS STS significantly decreased the viability (40-50% reduction), migration (migration rate of A549 cells from 0.67 to 0.28, H1299 cells from 0.71 to 0.41), invasion (invasion numbers of A549 cells from 172 to 55, H1299 cells from 188 to 35) and angiogenesis (80-90% reduction) of LUAD cells. Downregulation of miR-874 partially abolished the antitumour effect of STS. EEF-2K was identified to be the target of miR-874, and its downregulation markedly abolished the effects of miR-874 downregulation on tumourigenesis of LUAD. Moreover, silencing of TG2 abrogated eEF-2K-induced progression of LUAD. DISCUSSION AND CONCLUSIONS STS attenuated the tumourigenesis of LUAD through the mediation of the miR-874/eEF-2K/TG2 axis. STS is a promising drug to fight against lung cancer, which might effectively reverse drug resistance when combined with classical anticancer drugs.
Collapse
Affiliation(s)
- Bu Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Fang Zou
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Gu Xin
- Department of Neurology Physician, First Affiliated Hospital of Hebei Northern College, Zhangjiakou, Hebei Province, P.R. China
| | - Bao-Li Xiang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Jian-Qing Zhao
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Sheng-Fang Yuan
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Xiu-Long Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| | - Zhi-Hua Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Hebei Northern University, Zhangjiakou, Hebei Province, P.R. China
| |
Collapse
|
3
|
Jin Y, He S, Wu F, Luo C, Ma J, Hu Y. Novel Coumarin-furo[2,3-d]pyrimidinone hybrid derivatives as anticancer agents: Synthesis, biological evaluation and molecular docking. Eur J Pharm Sci 2023; 188:106520. [PMID: 37423580 DOI: 10.1016/j.ejps.2023.106520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
A series of coumarin-furo[2,3-d]pyrimidinone hybrid derivatives were synthesized, characterized by HR-MS, 1H NMR and 13C NMR. All synthesized compounds were evaluated for antiproliferative activities against hepatic carcinoma (HepG2) and cervical carcinoma (Hela) cell lines in vitro, and results shown that most of the compounds exhibited potent antitumor activity. Moreover, compound 3i, 8d and 8i were selected to induce apoptosis in HepG2 cells, and it displayed a significant concentration-dependent. Further, transwell migration assay was used to detect the most potent compound 8i, and the results revealed that 8i can significantly inhibit HepG2 cells migration and invasion. In addition, kinase activity assay showed compound 8i may be a multi-target inhibitor, which 8i has an inhibition rate of 40-20% on RON, ABL, GSK3α and so on ten different kinases at the concentration 1 μmol/L. At the same time, molecular docking studies revealed the possible binding modes of compounds 3i, 8d and 8i with kinase recepteur d'origine nantais (RON). A comparative molecular field analysis (CoMFA) model was established from 3D-QSAR study that guide us to a more bulkly and electro-positive Y group at the C-2 position of furo[2,3-d]pyrimidinone ring was preferable for the bioactivity improvement of our compounds. Our preliminary research indicated that the coumarin skeleton introducing to the furo[2,3-d]pyrimidine system had a significantly influence on the biological activities.
Collapse
Affiliation(s)
- Yao Jin
- School of Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Shengjie He
- School of Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Pharmaceutical Department of Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Fengxu Wu
- School of Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Chao Luo
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Junkai Ma
- School of Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China.
| | - Yanggen Hu
- School of Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
4
|
Wang H, Su M, Shi X, Li X, Zhang X, Yang A, Shen R. Design, Synthesis, Calculation and Biological Activity Studies Based on Privileged Coumarin Derivatives as Multifunctional Anti-AD Lead Compound. Chem Biodivers 2023; 20:e202200867. [PMID: 36461922 DOI: 10.1002/cbdv.202200867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Coumarins and their derivatives possessed a variety of biological activities and some of coumarin-based drugs have been approved by the US Food and Drug Administration. Alzheimer's disease (AD) has caused great losses to human society. However, due to its complex pathogenesis, the ideal therapeutic approach has not been found yet. Free radical scavenging activity which is one of the main activities of coumarin core structure is closely related to other anti-AD activities. Therefore, in this work coumarins were chosen as privileged lead compounds for the development of anti-AD drugs based on strategy of multi-target directed ligands (MTDLs). Derivatives 1-3 which could modulate multiple targets simultaneously, including ROS, cholinesterase, βamyloid (Aβ) aggregation, and metal dyshomeostasis were designed and for the first time synthesized. Their anti-AD activities were studied both in vitro and in silico. Results showed that 1-3 possessed potent antioxidant activities and 7-OH group did change the electron distribution of the molecule and enhance the antioxidant activities. They also have good inhibition activities on acetylcholinesterase (AChE) and Aβ aggregation and compound 1 had the strongest AChE inhibitory effect among the three compounds (AChE IC50 =11.15 μM). Compound 1-3 could also selectively chelate with Cu2+ and Al3+ to regulate the metal homeostasis. In silico simulations, including molecular docking and prediction of ADMET performance, indicated that 1-3 could interact with target proteins and cross the blood brain barrier. In conclusion, 1-3 could be promising MTDLs applied as anti-AD candidate drugs.
Collapse
Affiliation(s)
- Huiyan Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Mengyang Su
- School of Pharmacy, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Xuli Shi
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Xiangyu Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Xinyu Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, 222005, Lianyungang, China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| |
Collapse
|
5
|
Fu Q, Liu X, Li Y, Wang P, Wu T, Xiao H, Zhao Y, Liao Q, Song Z. Discovery of New Inhibitors of eEF2K from Traditional Chinese Medicine Based on In Silico Screening and In Vitro Experimental Validation. Molecules 2022; 27:molecules27154886. [PMID: 35956836 PMCID: PMC9369671 DOI: 10.3390/molecules27154886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is a highly conserved α kinase and is increasingly considered as an attractive therapeutic target for cancer as well as other diseases. However, so far, no selective and potent inhibitors of eEF2K have been identified. In this study, pharmacophore screening, homology modeling, and molecular docking methods were adopted to screen novel inhibitor hits of eEF2K from the traditional Chinese medicine database (TCMD), and then cytotoxicity assay and western blotting were performed to verify the validity of the screen. Resultantly, after two steps of screening, a total of 1077 chemicals were obtained as inhibitor hits for eEF2K from all 23,034 compounds in TCMD. Then, to verify the validity, the top 10 purchasable chemicals were further analyzed. Afterward, Oleuropein and Rhoifolin, two reported antitumor chemicals, were found to have low cytotoxicity but potent inhibitory effects on eEF2K activity. Finally, molecular dynamics simulation, pharmacokinetic and toxicological analyses were conducted to evaluate the property and potential of Oleuropein and Rhoifolin to be drugs. Together, by integrating in silico screening and in vitro biochemical studies, Oleuropein and Rhoifolin were revealed as novel eEF2K inhibitors, which will shed new lights for eEF2K-targeting drug development and anticancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ziyi Song
- Correspondence: ; Tel.: +86-771-3235635
| |
Collapse
|
6
|
Comert Onder F, Siyah P, Durdagi S, Ay M, Ozpolat B. Novel etodolac derivatives as eukaryotic elongation factor 2 kinase (eEF2K) inhibitors for targeted cancer therapy. RSC Med Chem 2022; 13:840-849. [PMID: 35923718 PMCID: PMC9298183 DOI: 10.1039/d2md00105e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 09/17/2023] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) has been shown to be an important molecular driver of tumorigenesis and validated as a potential novel molecular target in various solid cancers including triple negative breast cancer (TNBC). Therefore, there has been significant interest in identifying novel inhibitors of eEF2K for the development of targeted therapeutics and clinical translation. Herein, we investigated the effects of indole ring containing derivatives of etodolac, a nonsteroidal anti-inflammatory (NSAID) drug, as potential eEF2K inhibitors and we designed and synthesized seven novel compounds with a pyrano[3,4-b] indole core structure. We evaluated the eEF2K inhibitory activity of seven of these novel compounds using in silico molecular modeling and in vitro studies in TNBC cell lines. We identified two novel compounds (EC1 and EC7) with significant in vitro activity in inhibiting eEF2K in TNBC cells. In conclusion, our studies indicate that pyrano[3,4-b] indole scaffold containing compounds demonstrate marked eEF2K inhibitory activity and they may be used as eEF2K inhibitors for the development of eEF2K-targeted therapeutics.
Collapse
Affiliation(s)
- Ferah Comert Onder
- Department of Medical Biology, Çanakkale Onsekiz Mart University, Faculty of Medicine 17020 Çanakkale Turkey
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center 1515 Holcombe Boulevard, Unit 422 Houston TX 77030 USA
- Department of Chemistry, Natural Products and Drug Research Laboratory, Çanakkale Onsekiz Mart University, Faculty of Science and Arts 17020 Çanakkale Turkey
| | - Pinar Siyah
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University 34734 Istanbul Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University 34734 Istanbul Turkey
| | - Mehmet Ay
- Department of Chemistry, Natural Products and Drug Research Laboratory, Çanakkale Onsekiz Mart University, Faculty of Science and Arts 17020 Çanakkale Turkey
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center 1515 Holcombe Boulevard, Unit 422 Houston TX 77030 USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas, MD Anderson Cancer Center Houston TX USA
| |
Collapse
|
7
|
Onder FC, Sahin K, Senturk M, Durdagi S, Ay M. Identifying highly effective coumarin-based novel cholinesterase inhibitors by in silico and in vitro studies. J Mol Graph Model 2022; 115:108210. [DOI: 10.1016/j.jmgm.2022.108210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022]
|
8
|
Al-Otaibi JS, Mary YS, Mary YS, Ullah Z, Yadav R, Gupta N, Churchill DG. Adsorption properties of dacarbazine with graphene/fullerene/metal nanocages - Reactivity, spectroscopic and SERS analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120677. [PMID: 34872861 DOI: 10.1016/j.saa.2021.120677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Drug delivery devices are an effective way to minimize anticancer drug toxicity and nanostructures are used in the targeted drug delivery. In the present work, adsorption and interaction behavior of 4-(dimethylaminodiazenyl)-1H-imidazole-5-carboxamide (DAIC) with nano complexes (graphene, fullerene and fullerene like metal cages) are reported theoretically. From the reactivity studies, the electrophilicity index of DAIC-nanoclusters are increasing and this gives the bioactivity of the nanocluster systems. Adsorption energy is highest in the case of AlP and lowest in the case of BP clusters. Mulliken charge distribution of all systems is an evidence for chemical enhancement. DAIC adsorption over nanocages causes changes in electronic properties resulting in chemical enhancement and variation in Raman spectra which suggests that nanocages could be a good candidate for DAIC detection.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | | | | | - Zakir Ullah
- Convergence Research Center for Insect Vectors, Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Songdo-dong, Incheon 22012, South Korea
| | - Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India
| | - Nitin Gupta
- Centre for Converging Technologies, Central University of Rajasthan, Ajmer, India
| | - David G Churchill
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering Section), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Onder FC, Durdagi S, Kahraman N, Uslu TN, Kandemir H, Atici EB, Ozpolat B, Ay M. Novel inhibitors of eukaryotic elongation factor 2 kinase: In silico, synthesis and in vitro studies. Bioorg Chem 2021; 116:105296. [PMID: 34488125 DOI: 10.1016/j.bioorg.2021.105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is an unusual alpha kinase whose expression is highly upregulated in various cancers and contributes to tumor growth, metastasis, and progression. More importantly, eEF2K expression is associated with poor clinical outcome and shorter patient survival in breast, lung and ovarian cancers. Therefore, eEF2K is an emerging molecular target for development of novel targeted therapeutics and precision medicine in solid cancers. Currently, there are not any available potent and specific eEF2K inhibitors for clinical translation. In this study, we designed and synthesized a series of novel compounds with coumarin scaffold with various substitutions and investigated their effects in inhibiting eEF2K activity using in silico approaches and in vitro studies in breast cancer cells. We utilized an amide substitution at position 3 on the coumarin ring with their pharmacologically active groups containing pyrrolidine, piperidine, morpholine and piperazine groups with (CH2)2 bridged for aliphatic amides. Due to their ability to form covalent binding to the target enzyme, we also investigated the effects of boron containing groups on functionalized coumarin ring (3 compounds) and designed novel aliphatic and aromatic derivatives of coumarin scaffolds (10 compounds) and phenyl ring with boron groups (4 compounds). The Glide/SP module of the Maestro molecular modeling package was used to perform in silico analysis and molecular docking studies. According to our combined results, structure activity relationship (SAR) was performed in detail. Among the newly designed, synthesized, and tested compounds, our in vitro findings revealed that several compounds displayed a highly effective eEF2K inhibition at submicromolar concentrations in in vitro breast cancer cells. In conclusion, we identified novel compounds that can be used as eEF2K inhibitors and that they should be further evaluated by in vivo preclinical tumor models studies for antitumor efficacy and clinical translation.
Collapse
Affiliation(s)
- Ferah Comert Onder
- Department of Medical Biology, Faculty of Medicine, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey; Natural Products and Drug Research Laboratory, Department of Chemistry, Faculty of Science and Arts, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 İstanbul, Turkey
| | - Nermin Kahraman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Tugce Nur Uslu
- Department of Chemistry, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Hakan Kandemir
- Department of Chemistry, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | | | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States; Department of Experimental Therapeutics and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| | - Mehmet Ay
- Natural Products and Drug Research Laboratory, Department of Chemistry, Faculty of Science and Arts, Çanakkale Onsekiz Mart University, 17020 Çanakkale, Turkey.
| |
Collapse
|
10
|
Ballard DJ, Peng HY, Das JK, Kumar A, Wang L, Ren Y, Xiong X, Ren X, Yang JM, Song J. Insights Into the Pathologic Roles and Regulation of Eukaryotic Elongation Factor-2 Kinase. Front Mol Biosci 2021; 8:727863. [PMID: 34532346 PMCID: PMC8438118 DOI: 10.3389/fmolb.2021.727863] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic Elongation Factor-2 Kinase (eEF2K) acts as a negative regulator of protein synthesis, translation, and cell growth. As a structurally unique member of the alpha-kinase family, eEF2K is essential to cell survival under stressful conditions, as it contributes to both cell viability and proliferation. Known as the modulator of the global rate of protein translation, eEF2K inhibits eEF2 (eukaryotic Elongation Factor 2) and decreases translation elongation when active. eEF2K is regulated by various mechanisms, including phosphorylation through residues and autophosphorylation. Specifically, this protein kinase is downregulated through the phosphorylation of multiple sites via mTOR signaling and upregulated via the AMPK pathway. eEF2K plays important roles in numerous biological systems, including neurology, cardiology, myology, and immunology. This review provides further insights into the current roles of eEF2K and its potential to be explored as a therapeutic target for drug development.
Collapse
Affiliation(s)
- Darby J. Ballard
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Hao-Yun Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Yijie Ren
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Xingcong Ren
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| |
Collapse
|
11
|
Zhu S, Liao M, Tan H, Zhu L, Chen Y, He G, Liu B. Inhibiting Eukaryotic Elongation Factor 2 Kinase: An Update on Pharmacological Small-Molecule Compounds in Cancer. J Med Chem 2021; 64:8870-8883. [PMID: 34162208 DOI: 10.1021/acs.jmedchem.0c02218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K), a member of the atypical protein kinase family of alpha-kinases, is well-known as a negative regulator of protein synthesis by phosphorylating eEF2. Notably, eEF2K functions as a key regulator of several cellular processes, leading to tumorigenesis. To date, some small-molecule compounds have been reported as potential eEF2K inhibitors in cancer drug discovery. However, an ideal targeted drug design still faces huge challenges. Alternatively, other design strategies, such as repurposed drugs, dual-target drugs, and drug combination strategies, provide insights into the improvement of cancer treatment. Here, we summarize the crucial eEF2K-modulating pathways in cancer, including AMPK, REDD1, and Src. Moreover, we discuss the inhibition of eEF2K with single-target inhibitors, repurposed drugs, dual-target inhibitors, drug combination strategies, and other emerging technologies for therapeutic purposes. Together, these inspiring findings provide insights into a promising strategy for inhibiting eEF2K with small-molecule compounds to improve potential cancer therapy.
Collapse
Affiliation(s)
- Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huidan Tan
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingjuan Zhu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
El-Sawy ER, Abdelwahab AB, Kirsch G. Synthetic Routes to Coumarin(Benzopyrone)-Fused Five-Membered Aromatic Heterocycles Built on the α-Pyrone Moiety. Part II: Five-Membered Aromatic Rings with Multi Heteroatoms. Molecules 2021; 26:molecules26113409. [PMID: 34199910 PMCID: PMC8200119 DOI: 10.3390/molecules26113409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Coumarins are natural heterocycles that widely contribute to the design of various biologically active compounds. Fusing different aromatic heterocycles with coumarin at its 3,4-position is one of the interesting approaches to generating novel molecules with various biological activities. During our continuing interest in assembling information about fused five-membered aromatic heterocycles, and after having presented mono-hetero-atomic five-membered aromatic heterocycles in Part I. The current review Part II is intended to present an overview of the different synthetic routes to coumarin (benzopyrone)-fused five-membered aromatic heterocycles with multi-heteroatoms built on the pyrone ring, covering the literature from 1945 to 2021.
Collapse
Affiliation(s)
- Eslam Reda El-Sawy
- National Research Centre, Chemistry of Natural Compounds Department, Dokki, Cairo 12622, Egypt;
| | | | - Gilbert Kirsch
- Laboratoire Lorrain de Chimie Moléculaire (L.2.C.M.), Université de Lorraine, 57078 Metz, France
- Correspondence: ; Tel.: +33-0372-749-200; Fax: +33-0372-749-187
| |
Collapse
|
13
|
Comert Onder F, Kahraman N, Bellur Atici E, Cagir A, Kandemir H, Tatar G, Taskin Tok T, Kara G, Karliga B, Durdagi S, Ay M, Ozpolat B. Target-Driven Design of a Coumarinyl Chalcone Scaffold Based Novel EF2 Kinase Inhibitor Suppresses Breast Cancer Growth In Vivo. ACS Pharmacol Transl Sci 2021; 4:926-940. [PMID: 33860211 DOI: 10.1021/acsptsci.1c00030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 11/28/2022]
Abstract
Eukaryotic elongation factor 2 kinase (eEF-2K) is an unusual alpha kinase involved in protein synthesis through phosphorylation of elongation factor 2 (EF2). eEF-2K is highly overexpressed in breast cancer, and its activity is associated with significantly shortened patient survival and proven to be a potential molecular target in breast cancer. The crystal structure of eEF-2K remains unknown, and there is no potent, safe, and effective inhibitor available for clinical applications. We designed and synthesized several generations of potential inhibitors. The effect of the inhibitors at the binding pocket of eEF-2K was analyzed after developing a 3D target model by using a domain of another α-kinase called myosin heavy-chain kinase A (MHCKA) that closely resembles eEF-2K. In silico studies showed that compounds with a coumarin-chalcone core have high predicted binding affinities for eEF-2K. Using in vitro studies in highly aggressive and invasive (MDA-MB-436, MDA-MB-231, and BT20) and noninvazive (MCF-7) breast cancer cells, we identified a lead compound that was highly effective in inhibiting eEF-2K activity at submicromolar concentrations and at inhibiting cell proliferation by induction of apoptosis with no toxicity in normal breast epithelial cells. In vivo systemic administration of the lead compound encapsulated in single lipid-based liposomal nanoparticles twice a week significantly suppressed growth of MDA-MB-231 tumors in orthotopic breast cancer models in nude mice with no observed toxicity. In conclusion, our study provides a highly potent and in vivo effective novel small-molecule eEF-2K inhibitor that may be used as a molecularly targeted therapy breast cancer or other eEF-2K-dependent tumors.
Collapse
Affiliation(s)
- Ferah Comert Onder
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, Texas 77030, United States.,Department of Medical Biology, Çanakkale Onsekiz Mart University, Faculty of Medicine, 17020 Canakkale, Turkey.,Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science and Arts, Çanakkale Onsekiz Mart University, 17020 Canakkale, Turkey
| | - Nermin Kahraman
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, Texas 77030, United States
| | | | - Ali Cagir
- Izmir Institute of Technology, Department of Chemistry, Bioorganic and Medicinal Chemistry Laboratory, 35430 Urla, Turkey
| | - Hakan Kandemir
- Tekirdag Namik Kemal University, Department of Chemistry, 59030 Tekirdag, Turkey
| | - Gizem Tatar
- Gaziantep University, Institute of Health Sciences, Department of Bioinformatics and Computational Biology, 27310 Gaziantep, Turkey
| | - Tugba Taskin Tok
- Gaziantep University, Institute of Health Sciences, Department of Bioinformatics and Computational Biology, 27310 Gaziantep, Turkey.,Gaziantep University, Faculty of Arts and Sciences, Department of Chemistry, 27310 Gaziantep, Turkey
| | - Goknur Kara
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, Texas 77030, United States
| | | | - Serdar Durdagi
- Department of Biophysics, School of Medicine, Computational Biology and Molecular Simulations Laboratory, Bahcesehir University, 34734 Istanbul, Turkey
| | - Mehmet Ay
- Department of Chemistry, Natural Products and Drug Research Laboratory, Faculty of Science and Arts, Çanakkale Onsekiz Mart University, 17020 Canakkale, Turkey
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, Texas 77030, United States.,Center for RNA Interference and Non-Coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
14
|
Jiang SL, Mo JL, Peng J, Lei L, Yin JY, Zhou HH, Liu ZQ, Hong WX. Targeting translation regulators improves cancer therapy. Genomics 2020; 113:1247-1256. [PMID: 33189778 DOI: 10.1016/j.ygeno.2020.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Deregulation of protein synthesis may be involved in multiple aspects of cancer, such as gene expression, signal transduction and drive specific cell biological responses, resulting in promoting cancer growth, invasion and metastasis. Study the molecular mechanisms about translational control may help us to find more effective anti-cancer drugs and develop novel therapeutic opportunities. Recently, the researchers had focused on targeting translational machinery to overcome cancer, and various small molecular inhibitors targeting translation factors or pathways have been tested in clinical trials and exhibited improving outcomes in several cancer types. There is no doubt that an insight into the class of translation regulation protein would provide new target for pharmacologic intervention and further provide opportunities to develop novel anti-tumor therapeutic interventions. In this review, we summarized the developments of translational control in cancer survival and progression et al, and highlighted the therapeutic approach targeted translation regulation to overcome the cancer.
Collapse
Affiliation(s)
- Shi-Long Jiang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Jun-Luan Mo
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China; Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Ji Peng
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Lin Lei
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China.
| | - Wen-Xu Hong
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China.
| |
Collapse
|
15
|
Bhaskaran RP, Janardhanan JC, Babu BP. Metal‐Free Synthesis of Pyrazoles and Chromenopyrazoles from Hydrazones and Acetylenic Esters. ChemistrySelect 2020. [DOI: 10.1002/slct.202000719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rasmi P. Bhaskaran
- Department of ChemistryNational Institute of Technology Karnataka (NITK), Surathkal 575025 Mangalore
| | - Jith C. Janardhanan
- Department of Applied ChemistryCochin University of Science and Technology (CUSAT) Kochi 682022 INDIA
| | - Beneesh P. Babu
- Department of ChemistryNational Institute of Technology Karnataka (NITK), Surathkal 575025 Mangalore
| |
Collapse
|