1
|
Khodayari A, Hirn U, Spirk S, Ogawa Y, Seveno D, Thielemans W. Advancing plant cell wall modelling: Atomistic insights into cellulose, disordered cellulose, and hemicelluloses - A review. Carbohydr Polym 2024; 343:122415. [PMID: 39174111 DOI: 10.1016/j.carbpol.2024.122415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 08/24/2024]
Abstract
The complexity of plant cell walls on different hierarchical levels still impedes the detailed understanding of biosynthetic pathways, interferes with processing in industry and finally limits applicability of cellulose materials. While there exist many challenges to readily accessing these hierarchies at (sub-) angström resolution, the development of advanced computational methods has the potential to unravel important questions in this field. Here, we summarize the contributions of molecular dynamics simulations in advancing the understanding of the physico-chemical properties of natural fibres. We aim to present a comprehensive view of the advancements and insights gained from molecular dynamics simulations in the field of carbohydrate polymers research. The review holds immense value as a vital reference for researchers seeking to undertake atomistic simulations of plant cell wall constituents. Its significance extends beyond the realm of molecular modeling and chemistry, as it offers a pathway to develop a more profound comprehension of plant cell wall chemistry, interactions, and behavior. By delving into these fundamental aspects, the review provides invaluable insights into future perspectives for exploration. Researchers within the molecular modeling and carbohydrates community can greatly benefit from this resource, enabling them to make significant strides in unraveling the intricacies of plant cell wall dynamics.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium.
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Yu Ogawa
- Centre de recherches sur les macromolécules végétales, CERMAV-CNRS, CS40700, 38041 Grenoble cedex 9, France
| | - David Seveno
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
2
|
Nguyen MVT, Sherck N, Köhler S, Schreiner E, Gupta R, Fredrickson GH, Shell MS. Multiscale Computational Study of Cellulose Acetate-Water Miscibility: Insights from Molecularly Informed Field-Theoretic Modeling. Biomacromolecules 2024; 25:5809-5818. [PMID: 39113404 DOI: 10.1021/acs.biomac.4c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Cellulose acetate (CA), a prominent water-soluble derivative of cellulose, is a promising biodegradable ingredient that has applications in films, membranes, fibers, drug delivery, and more. In this work, we present a molecularly informed field-theoretic model for CA to explore its phase behavior in aqueous solutions. By integrating atomistic details into large-scale field-theoretic simulations via the relative entropy coarse-graining framework, our approach enables efficient calculations of CA's miscibility window as a function of the degree of substitution (DS) of cellulose hydroxyl groups with acetate side chains. This allows us to capture the intricate phase behavior of CA, particularly its unique miscibility at intermediate substitution, without relying on experimental input. Additionally, the model directly probes CA solution behavior specific to the relative DS at C2, C3, and C6 alcohol sites, providing insights for the rational design of water-soluble CA for diverse applications. This work demonstrates a promising integration of molecularly informed field theories, complementing wet-lab experimentation, for engineering the next-generation polymeric materials with precisely tailored properties.
Collapse
Affiliation(s)
- My V T Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | | | | | | | - Rohini Gupta
- California Research Alliance (CARA) by BASF, Berkeley, California 94720, United States
| | - Glenn H Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
3
|
Wu Z, Collins AM, Jayaraman A. Understanding Self-Assembly and Molecular Packing in Methylcellulose Aqueous Solutions Using Multiscale Modeling and Simulations. Biomacromolecules 2024; 25:1682-1695. [PMID: 38417021 DOI: 10.1021/acs.biomac.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
We present a multiscale molecular dynamics (MD) simulation study on self-assembly in methylcellulose (MC) aqueous solutions. First, using MD simulations with a new coarse-grained (CG) model of MC chains in implicit water, we establish how the MC chains self-assemble to form fibrils and fibrillar networks and elucidate the MC chains' packing within the assembled fibrils. The CG model for MC is extended from a previously developed model for unsubstituted cellulose and captures the directionality of H-bonding interactions between the -OH groups. The choice and placement of the CG beads within each monomer facilitates explicit modeling of the exact degree and position of methoxy substitutions in the monomers along the MC chain. CG MD simulations show that with increasing hydrophobic effect and/or increasing H-bonding strength, the commercial MC chains (with degree of methoxy substitution, DS, ∼1.8) assemble from a random dispersed configuration into fibrils. The assembled fibrils exhibit consistent fibril diameters regardless of the molecular weight and concentration of MC chains, in agreement with past experiments. Most MC chains' axes are aligned with the fibril axis, and some MC chains exhibit twisted conformations in the fibril. To understand the molecular driving force for the twist, we conduct atomistic simulations of MC chains preassembled in fibrils (without any chain twists) in explicit water at 300 and 348 K. These atomistic simulations also show that at DS = 1.8, MC chains adopt twisted conformations, with these twists being more prominent at higher temperatures, likely as a result of shielding of hydrophobic methyl groups from water. For MC chains with varying DS, at 348 K, atomistic simulations show a nonmonotonic effect of DS on water-monomer contacts. For 0.0 < DS < 0.6, the MC monomers have more water contacts than at DS = 0.0 or DS > 0.6, suggesting that with few methoxy substitutions, the MC chains are effectively hydrophilic, letting the water molecules diffuse into the fibril to participate in H-bonds with the MC chains' remaining -OH groups. At DS > 0.6, the MC monomers become increasingly hydrophobic, as seen by decreasing water contacts around each monomer. We conclude based on the atomistic observations that MC chains with lower degrees of substitutions (DS ≤ 0.6) should exhibit solubility in water over broader temperature ranges than DS ∼ 1.8 chains.
Collapse
Affiliation(s)
- Zijie Wu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Audrey M Collins
- Department of Chemistry and Biochemistry, University of Delaware, 102 Brown Laboratory, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Christians LF, Halingstad EV, Kram E, Okolovitch EM, Pak AJ. Formalizing Coarse-Grained Representations of Anisotropic Interactions at Multimeric Protein Interfaces Using Virtual Sites. J Phys Chem B 2024; 128:1394-1406. [PMID: 38316012 DOI: 10.1021/acs.jpcb.3c07023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Molecular simulations of biomacromolecules that assemble into multimeric complexes remain a challenge due to computationally inaccessible length and time scales. Low-resolution and implicit-solvent coarse-grained modeling approaches using traditional nonbonded interactions (both pairwise and spherically isotropic) have been able to partially address this gap. However, these models may fail to capture the complex anisotropic interactions present at macromolecular interfaces unless higher-order interaction potentials are incorporated at the expense of the computational cost. In this work, we introduce an alternate and systematic approach to represent directional interactions at protein-protein interfaces by using virtual sites restricted to pairwise interactions. We show that virtual site interaction parameters can be optimized within a relative entropy minimization framework by using only information from known statistics between coarse-grained sites. We compare our virtual site models to traditional coarse-grained models using two case studies of multimeric protein assemblies and find that the virtual site models predict pairwise correlations with higher fidelity and, more importantly, assembly behavior that is morphologically consistent with experiments. Our study underscores the importance of anisotropic interaction representations and paves the way for more accurate yet computationally efficient coarse-grained simulations of macromolecular assembly in future research.
Collapse
Affiliation(s)
- Luc F Christians
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ethan V Halingstad
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Emiel Kram
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Evan M Okolovitch
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander J Pak
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Materials Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
5
|
Nabiyan A, Muttathukattil A, Tomazic F, Pretzel D, Schubert US, Engel M, Schacher FH. Self-Assembly of Core-Shell Hybrid Nanoparticles by Directional Crystallization of Grafted Polymers. ACS NANO 2023; 17:21216-21226. [PMID: 37721407 DOI: 10.1021/acsnano.3c05461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Nanoparticle self-assembly is an efficient bottom-up strategy for the creation of nanostructures. In a typical approach, ligands are grafted onto the surfaces of nanoparticles to improve the dispersion stability and control interparticle interactions. Ligands then remain secondary and usually are not expected to order significantly during superstructure formation. Here, we investigate how ligands can play a more decisive role in the formation of anisotropic inorganic-organic hybrid materials. We graft poly(2-iso-propyl-2-oxazoline) (PiPrOx) as a crystallizable shell onto SiO2 nanoparticles. By varying the PiPrOx grafting density, both solution stability and nanoparticle aggregation behavior can be controlled. Upon prolonged heating, anisotropic nanostructures form in conjunction with the crystallization of the ligands. Self-assembly of hybrid PiPrOx@SiO2 (shell@core) nanoparticles proceeds in two steps: First, the rapid formation of amorphous aggregates occurs via gelation, mediated by the interaction between nanoparticles through grafted polymer chains. As a second step, slow radial growth of fibers was observed via directional crystallization, governed by the incorporation of crystalline ribbons formed from free polymeric ligands in combination with crystallization of the covalently attached ligand shell. Our work reveals how crystallization-driven self-assembly of ligands can create intricate hybrid nanostructures.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Aswathy Muttathukattil
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany
| | - Federico Tomazic
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany
| | - David Pretzel
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany
| | - Ulrich S Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany
| | - Michael Engel
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany
| | - Felix H Schacher
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
| |
Collapse
|
6
|
Wu Z, Wu JW, Michaudel Q, Jayaraman A. Investigating the Hydrogen Bond-Induced Self-Assembly of Polysulfamides Using Molecular Simulations and Experiments. Macromolecules 2023; 56:5033-5049. [PMID: 38362140 PMCID: PMC10865372 DOI: 10.1021/acs.macromol.3c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/08/2023] [Indexed: 02/17/2024]
Abstract
In this paper, we present a synergistic, experimental, and computational study of the self-assembly of N,N'-disubstituted polysulfamides driven by hydrogen bonds (H-bonds) between the H-bonding donor and acceptor groups present in repeating sulfamides as a function of the structural design of the polysulfamide backbone. We developed a coarse-grained (CG) polysulfamide model that captures the directionality of H-bonds between the sulfamide groups and used this model in molecular dynamics (MD) simulations to study the self-assembly of these polymers in implicit solvent. The CGMD approach was validated by reproducing experimentally observed trends in the extent of crystallinity for three polysulfamides synthesized with aliphatic and/or aromatic repeating units. After validation of our CGMD approach, we computationally predicted the effect of repeat unit bulkiness, length, and uniformity of segment lengths in the polymers on the extent of orientational and positional order among the self-assembled polysulfamide chains, providing key design principles for tuning the extent of crystallinity in polysulfamides in experiments. Those computational predictions were then experimentally tested through the synthesis and characterization of polysulfamide architectures.
Collapse
Affiliation(s)
- Zijie Wu
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States
| | - Jiun Wei Wu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Quentin Michaudel
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| |
Collapse
|
7
|
Lutsyk V, Wolski P, Plazinski W. Extending the Martini 3 Coarse-Grained Force Field to Carbohydrates. J Chem Theory Comput 2022; 18:5089-5107. [PMID: 35904547 PMCID: PMC9367002 DOI: 10.1021/acs.jctc.2c00553] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbohydrates play an essential role in a large number of chemical and biochemical processes. High structural diversity and conformational heterogeneity make it problematic to link their measurable properties to molecular features. Molecular dynamics simulations carried out at the level of classical force fields are routinely applied to study the complex processes occurring in carbohydrate-containing systems, while the usefulness of such simulations relies on the accuracy of the underlying theoretical model. In this article, we present the coarse-grained force field dedicated to glucopyranose-based carbohydrates and compatible with the recent version of the Martini force field (v. 3.0). The parameterization was based on optimizing bonded and nonbonded parameters with a reference to the all-atom simulation results and the experimental data. Application of the newly developed coarse-grained carbohydrate model to oligosaccharides curdlan and cellulose displays spontaneous formation of aggregates of experimentally identified features. In contact with other biomolecules, the model is capable of recovering the protective effect of glucose monosaccharides on a lipid bilayer and correctly identifying the binding pockets in carbohydrate-binding proteins. The features of the newly proposed model make it an excellent candidate for further extensions, aimed at modeling more complex, functionalized, and biologically relevant carbohydrates.
Collapse
Affiliation(s)
- Valery Lutsyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Pawel Wolski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Wojciech Plazinski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.,Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| |
Collapse
|
8
|
Xu E, Wang J, Tang J, Ruan S, Ma S, Qin Y, Wang W, Tian J, Zhou J, Cheng H, Liu D. Heat-induced conversion of multiscale molecular structure of natural food nutrients: A review. Food Chem 2022; 369:130900. [PMID: 34496317 DOI: 10.1016/j.foodchem.2021.130900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/17/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022]
Abstract
Thermal process is the most important way of treating foods. Heat energy inputted into the natural food system induces the depolymerization of multi-scale structures of matrix, and causes the intramolecular and intermolecular interactions of different nutrients. It attacks and breaks the original polymeric molecule structures and the functional properties of macronutrients such as carbohydrates, proteins and lipids. Micronutrients such as vitamins and other novel functional ingredients are also thermally converted. The heat-induced conversions of nutrients are slightly or totally with discrepancy in simple-, simulated- and real-food systems, respectively. Thus, this review aims to extensively summarize the heat-induced structural characteristics, thermal conversion pathways and pyrolysis mechanism of nutrients both in simple and complex food matrices. The structural change of each nutrient and its thermal reaction kinetics depend on the molecule structure and polymeric characteristic of the unit substances in the system.
Collapse
Affiliation(s)
- Enbo Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jingyi Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Junyu Tang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China; Ningbo Institute of Technology, Zhejiang University, Ningbo, China
| | - Shaolong Ruan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China; Ningbo Institute of Technology, Zhejiang University, Ningbo, China
| | - Shuohan Ma
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yu Qin
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China; Ningbo Institute of Technology, Zhejiang University, Ningbo, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jianwei Zhou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China; Ningbo Institute of Technology, Zhejiang University, Ningbo, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
9
|
Dhamankar S, Webb MA. Chemically specific coarse‐graining of polymers: Methods and prospects. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satyen Dhamankar
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| | - Michael A. Webb
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| |
Collapse
|
10
|
Kang W, Ji Y, Cheng Y. Van der Waals force-driven indomethacin-ss-paclitaxel nanodrugs for reversing multidrug resistance and enhancing NSCLC therapy. Int J Pharm 2021; 603:120691. [PMID: 33965541 DOI: 10.1016/j.ijpharm.2021.120691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
The high expression of multidrug resistance-associated protein 1 (MRP1) in cancer cells caused serious multidrug resistance (MDR), which limited the effectiveness of paclitaxel (PTX) in non-small cell lung cancer (NSCLC) chemotherapy. Indomethacin (IND), a kind of non-steroidal anti-inflammatory drugs (NSAIDs), which has been confirmed to be a potential MRP1 inhibitor. Taking into account the advantages of old drugs without extra controversial biosafety issue, in this manuscript, the disulfide bond (-S-S-) was employed for connecting IND and PTX to construct conjugate IND-S-S-PTX, which was further self-assembled and formed nanodrug (IND-S-S-PTX NPs). The particle size of IND-S-S-PTX NPs was ~160 nm with a narrow PDI value of 0.099, which distributed well in water and also exhibited a stable characteristic. Moreover, due to the existence of disulfide bond, the NPs were sensitive to the high level of glutathione (GSH) in tumor microenvironment. Molecular dynamics (MD) simulation presented the process of self-assembly in detail. Density functional theory (DFT) calculations revealed that the main driving force in self-assembly process was originated from the van der waals force. In addition, this carrier-free nano drug delivery systems (nDDs) could reverse the MDR by downregulating the expression of MRP1 protein in A549/taxol.
Collapse
Affiliation(s)
- Wenbo Kang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Yu Cheng
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
11
|
Abstract
Cellulose is the most common biopolymer and widely used in our daily life. Due to its unique properties and biodegradability, it has been attracting increased attention in the recent years and various new applications of cellulose and its derivatives are constantly being found. The development of new materials with improved properties, however, is not always an easy task, and theoretical models and computer simulations can often help in this process. In this review, we give an overview of different coarse-grained models of cellulose and their applications to various systems. Various coarse-grained models with different mapping schemes are presented, which can efficiently simulate systems from the single cellulose fibril/crystal to the assembly of many fibrils/crystals. We also discuss relevant applications of these models with a focus on the mechanical properties, self-assembly, chiral nematic phases, conversion between cellulose allomorphs, composite materials and interactions with other molecules.
Collapse
|
12
|
Lu S, Wu Z, Jayaraman A. Molecular Modeling and Simulation of Polymer Nanocomposites with Nanorod Fillers. J Phys Chem B 2021; 125:2435-2449. [PMID: 33646794 DOI: 10.1021/acs.jpcb.1c00097] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a coarse-grained (CG) molecular dynamics (MD) simulation study of polymer nanocomposites (PNCs) containing nanorods with homogeneous and patchy surface chemistry/functionalization, modeled with isotropic and directional nanorod-nanorod attraction, respectively. We show how the PNC morphology is impacted by the nanorod design (i.e., aspect ratio, homogeneous or patchy surface chemistry/functionalization) for nanorods with a diameter equal to the Kuhn length of the polymer in the matrix. For PNCs with 10 vol % nanorods that have an aspect ratio ≤5, we observe percolated morphology with directional nanorod-nanorod attraction and phase-separated (i.e., nanorod aggregation) morphology with isotropic nanorod-nanorod attraction. In contrast, for nanorods with higher aspect ratios, both types of attractions result in aggregated nanorods morphology due to the dominance of entropic driving forces that cause long nanorods to form orientationally ordered aggregates. For most PNCs with isotropic or directional nanorod-nanorod attractions, the average matrix polymer conformation is not perturbed by the inclusion of up to 20 vol % nanorods. The polymer chains in contact with nanorods (i.e., interfacial chains) are on average extended and statistically different from the conformations the matrix chains adopt in the pure melt state (with no nanorods); in contrast, the polymer chains far from nanorods (i.e., bulk chains) adopt the same conformations as the matrix chains adopt in the pure melt state. We also study the effect of other parameters, such as attraction strength, nanorod volume fraction, and matrix chain length, for PNCs with isotropic or directional nanorod-nanorod attractions. Collectively, our results provide valuable design rules to achieve specific PNC morphologies (i.e., dispersed, aggregated, percolated, and orientationally aligned nanorods) for various potential applications.
Collapse
Affiliation(s)
- Shizhao Lu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Zijie Wu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.,Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| |
Collapse
|