1
|
Rezaei M, Ghasemitarei M, Razzokov J, Yusupov M, Ghorbanalilu M, Ejtehadi MR. In silico study of the impact of oxidation on pyruvate transmission across the hVDAC1 protein channel. Arch Biochem Biophys 2024; 751:109835. [PMID: 38000492 DOI: 10.1016/j.abb.2023.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
The overexpression of voltage dependent anion channels (VDACs), particularly VDAC1, in cancer cells compared to normal cells, plays a crucial role in cancer cell metabolism, apoptosis regulation, and energy homeostasis. In this study, we used molecular dynamics (MD) simulations to investigate the effect of a low level of VDAC1 oxidation (induced e.g., by cold atmospheric plasma (CAP)) on the pyruvate (Pyr) uptake by VDAC1. Inhibiting Pyr uptake through VDAC1 can suppress cancer cell proliferation. Our primary target was to study the translocation of Pyr across the native and oxidized forms of hVDAC1, the human VDAC1. Specifically, we employed MD simulations to analyze the hVDAC1 structure by modifying certain cysteine residues to cysteic acids and methionine residues to methionine sulfoxides, which allowed us to investigate the effect of oxidation. Our results showed that the free energy barrier for Pyr translocation through the native and oxidized channel was approximately 4.3 ± 0.7 kJ mol-1 and 10.8 ± 1.8 kJ mol-1, respectively. An increase in barrier results in a decrease in rate of Pyr permeation through the oxidized channel. Thus, our results indicate that low levels of CAP oxidation reduce Pyr translocation, resulting in decreased cancer cell proliferation. Therefore, low levels of oxidation are likely sufficient to treat cancer cells given the inhibition of Pyr uptake.
Collapse
Affiliation(s)
- Mahsa Rezaei
- Department of Physics, Shahid Beheshti University, Tehran, 19839-69411, Iran
| | - Maryam Ghasemitarei
- Department of Physics, Sharif University of Technology, 14588-89694, Tehran, Iran; Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Belgium.
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, 100000, Tashkent, Uzbekistan; School of Engineering, Central Asian University, Tashkent, 111221, Uzbekistan; Laboratory of Experimental Biophysics, Centre for Advanced Technologies, 100174, Tashkent, Uzbekistan; Department of Chemistry, Termez State University, 190111, Termez, Uzbekistan
| | - Maksudbek Yusupov
- School of Engineering, New Uzbekistan University, 100000, Tashkent, Uzbekistan; Department of Information Technologies, Tashkent International University of Education, 100207, Tashkent, Uzbekistan; Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, 100125, Tashkent, Uzbekistan; Department of Power Supply and Renewable Energy Sources, National Research University TIIAME, 100000, Tashkent, Uzbekistan
| | | | | |
Collapse
|
2
|
Janitra RS, Destiarani W, Hardianto A, Baroroh U, Rohmatulloh FG, Rustaman, Subroto T, Rukiah, Yusuf M. Multilayer Model of Gold Nanoparticles (AuNPs) and Its Application in the Classical Molecular Dynamics Simulation of Citrate-Capped AuNPs. J Phys Chem B 2023; 127:7103-7110. [PMID: 37540714 DOI: 10.1021/acs.jpcb.3c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Studies on the interaction between gold nanoparticles (AuNPs) and functional proteins have been useful in developing diagnostic and therapeutic agents. Such studies require a realistic computational model of AuNPs for successful molecular design works. This study offers a new multilayer model of AuNPs to address the inconsistency between its molecular mechanics' interpretation and AuNP's plasmonic nature. We performed partial charge quantum calculation of AuNPs using Au13 and Au55 models. The result showed that it has partial negative charges on the surface and partial positive charges on the inner part, indicating that the AuNP model should be composed of multiatom types. We tested the partial charge parameters of these gold (Au) atoms in classical molecular dynamics simulation (CMD) of AuNPs. The result showed that our parameters performed better in simulating the adsorption of Na+ and dicarboxy acetone in terms of consistency with surface charge density than the zero charges Au in the interface force field (IFF). We proposed that the multiple-charged AuNP model can be developed further into a simpler four-atom type of Au in a larger AuNP size.
Collapse
Affiliation(s)
- Regaputra S Janitra
- Biotechnology Master Program, Postgraduate School, Universitas Padjadjaran, Jl. Dipatiukur 35, Bandung 40132, West Java, Indonesia
| | - Wanda Destiarani
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung 40132, West Java, Indonesia
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung 40132, West Java, Indonesia
| | - Umi Baroroh
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung 40132, West Java, Indonesia
- Department of Biotechnology, Indonesian School of Pharmacy, Jl. Soekarno Hatta No. 354, Bandung 40266, West Java, Indonesia
| | - Fauzian G Rohmatulloh
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung 40132, West Java, Indonesia
| | - Rustaman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java, Indonesia
| | - Toto Subroto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung 40132, West Java, Indonesia
| | - Rukiah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java, Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung 40132, West Java, Indonesia
| |
Collapse
|
3
|
Chakravarty C, Aksu H, Martinez B JA, Ramos P, Pavanello M, Dunietz BD. Role of Dielectric Screening in Calculating Excited States of Solvated Azobenzene: A Benchmark Study Comparing Quantum Embedding and Polarizable Continuum Model for Representing the Solvent. J Phys Chem Lett 2022; 13:4849-4855. [PMID: 35617015 DOI: 10.1021/acs.jpclett.2c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The low energy excited states of the conformational isomers of solvated azobenzene are calculated with several DFT methods accounting for the solute-solvent interaction implicitly with the polarizable continuum model or explicitly with subsystem DFT. For the latter, embedding potentials are calculated for 21 sampled snapshots of the solvent molecules. First, we find that accounting for the solvent implicitly or explicitly has little effect on the predicted cis-trans S1 excitation energy gap. Second, we find that azobenzene's S1 cis and trans energies are accurate as long as a screened range-separated hybrid exchange-correlation functional is employed. Finally, we also tested a simplified workflow whereby a single, averaged, embedding potential is used. Unfortunately, we find larger deviations against the experiment for the simplified workflow. This highlights a basic flaw in the approach, where the time scale of solvent averaging is much longer than that of the solute's electronic polarization.
Collapse
Affiliation(s)
- Chandrima Chakravarty
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Huseyin Aksu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
- Computational Physics Laboratory, Department of Physics, Pamukkale University, 20010 Denizli, Turkey
| | - Jessica A Martinez B
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Pablo Ramos
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Michele Pavanello
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
4
|
Saller MAC, Lai Y, Geva E. An Accurate Linearized Semiclassical Approach for Calculating Cavity-Modified Charge Transfer Rate Constants. J Phys Chem Lett 2022; 13:2330-2337. [PMID: 35245071 DOI: 10.1021/acs.jpclett.2c00122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We show that combining the linearized semiclasscial approximation with Fermi's golden rule (FGR) rate theory gives rise to a general-purpose cost-effective and scalable computational framework that can accurately capture the cavity-induced rate enhancement of charge transfer reactions that occurs when the molecular system is placed inside a microcavity. Both partial linearization with respect to the nuclear and photonic degrees of freedom and full linerization with respect to nuclear, photonic, and electronic degrees of freedom (the latter within the mapping Hamiltonian approach) are shown to be highly accurate, provided that the Wigner transforms of the product (WoP) of operators at the initial time is not replaced by the product of their Wigner transforms. We also show that the partial linearization method yields the quantum-mechanically exact cavity-modified FGR rate constant for a model system in which the donor and acceptor potential energy surfaces are harmonic and identical except for a shift in the equilibrium energy and geometry, if WoP is applied.
Collapse
Affiliation(s)
- Maximilian A C Saller
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yifan Lai
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Cerdá J, Calbo J, Ortí E, Aragó J. Charge-Separation and Charge-Recombination Rate Constants in a Donor-Acceptor Buckybowl-Based Supramolecular Complex: Multistate and Solvent Effects. J Phys Chem A 2021; 125:9982-9994. [PMID: 34767714 PMCID: PMC8630798 DOI: 10.1021/acs.jpca.1c05740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/27/2021] [Indexed: 11/29/2022]
Abstract
The kinetics of the nonradiative photoinduced processes (charge-separation and charge-recombination) experimented in solution by a supramolecular complex formed by an electron-donating bowl-shaped truxene-tetrathiafulvalene (truxTTF) derivative and an electron-accepting fullerene fragment (hemifullerene, C30H12) has been theoretically investigated. The truxTTF·C30H12 heterodimer shows a complex decay mechanism after photoexcitation with the participation of several low-lying excited states of different nature (local and charge-transfer excitations) all close in energy. In this scenario, the absolute rate constants for all of the plausible charge-separation (CS) and charge-recombination (CR) channels have been successfully estimated using the Marcus-Levich-Jortner (MLJ) rate expression, electronic structure calculations, and a multistate diabatization method. The outcomes suggest that for a reasonable estimate of the CS and CR rate constants, it is necessary to include the following: (i) optimally tuned long-range (LC) corrected density functionals, to predict a correct energy ordering of the low-lying excited states; (ii) multistate effects, to account for the electronic couplings; and (iii) environmental solvent effects, to provide a proper stabilization of the charge-transfer excited states and accurate external reorganization energies. The predicted rate constants have been incorporated in a simple but insightful kinetic model that allows estimating global CS and CR rate constants in line with the most generalized three-state model used for the CS and CR processes. The values computed for the global CS and CR rates of the donor-acceptor truxTTF·C30H12 supramolecular complex are found to be in good agreement with the experimental values.
Collapse
Affiliation(s)
- Jesús Cerdá
- Instituto de Ciencia Molecular
(ICMol), Universidad de Valencia, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Joaquín Calbo
- Instituto de Ciencia Molecular
(ICMol), Universidad de Valencia, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular
(ICMol), Universidad de Valencia, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Juan Aragó
- Instituto de Ciencia Molecular
(ICMol), Universidad de Valencia, Catedrático José Beltrán 2, Paterna 46980, Spain
| |
Collapse
|
6
|
Tinnin J, Aksu H, Tong Z, Zhang P, Geva E, Dunietz BD, Sun X, Cheung MS. CTRAMER: An open-source software package for correlating interfacial charge transfer rate constants with donor/acceptor geometries in organic photovoltaic materials. J Chem Phys 2021; 154:214108. [PMID: 34240998 DOI: 10.1063/5.0050574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In this paper, we present CTRAMER (Charge-Transfer RAtes from Molecular dynamics, Electronic structure, and Rate theory)-an open-source software package for calculating interfacial charge-transfer (CT) rate constants in organic photovoltaic (OPV) materials based on ab initio calculations and molecular dynamics simulations. The software is based on identifying representative donor/acceptor geometries within interfacial structures obtained from molecular dynamics simulation of donor/acceptor blends and calculating the corresponding Fermi's golden rule CT rate constants within the framework of the linearized-semiclassical approximation. While the methods used are well established, the integration of these state-of-the-art tools originating from different disciplines to study photoinduced CT processes with explicit treatment of the environment, in our opinion, makes this package unique and innovative. The software also provides tools for investigating other observables of interest. After outlining the features and implementation details, the usage and performance of the software are demonstrated with results from an example OPV system.
Collapse
Affiliation(s)
- Jacob Tinnin
- Department of Physics, University of Houston, 617 Science and Research Building 1, Houston, Texas 77204, USA
| | - Huseyin Aksu
- Department of Chemistry and Biochemistry, Kent State University, 1175 Risman Drive, Kent, Ohio 44242, USA
| | - Zhengqing Tong
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China; and Department of Chemistry, New York University, New York, New York 10003, USA
| | - Pengzhi Zhang
- Department of Physics, University of Houston, 617 Science and Research Building 1, Houston, Texas 77204, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, 1175 Risman Drive, Kent, Ohio 44242, USA
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China; and Department of Chemistry, New York University, New York, New York 10003, USA
| | - Margaret S Cheung
- Department of Physics, University of Houston, 617 Science and Research Building 1, Houston, Texas 77204, USA
| |
Collapse
|