1
|
Raposo-Hernández G, Pappalardo RR, Réal F, Vallet V, Sánchez Marcos E. Toward a realistic theoretical electronic spectra of metal aqua ions in solution: The case of Ce(H2O)n3+ using statistical methods and quantum chemistry calculations. J Chem Phys 2024; 161:144109. [PMID: 39387406 DOI: 10.1063/5.0228155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Accurately predicting spectra for heavy elements, often open-shell systems, is a significant challenge typically addressed using a single cluster approach with a fixed coordination number. Developing a realistic model that accounts for temperature effects, variable coordination numbers, and interprets experimental data is even more demanding due to the strong solute-solvent interactions present in solutions of heavy metal cations. This study addresses these challenges by combining multiple methodologies to accurately predict realistic spectra for highly charged metal cations in aqueous media, with a focus on the electronic absorption spectrum of Ce3+ in water. Utilizing highly correlated relativistic quantum mechanical (QM) wavefunctions and structures from molecular dynamics (MD) simulations, we show that the convolution of individual vertical transitions yields excellent agreement with experimental results without the introduction of empirical broadening. Good results are obtained for both the normalized spectrum and that of absolute intensity. The study incorporates a statistical machine learning algorithm, Gaussian Mixture Models-Nuclear Ensemble Approach (GMM-NEA), to convolute individual spectra. The microscopic distribution provided by MD simulations allows us to examine the contributions of the octa- and ennea-hydrate of Ce3+ in water to the final spectrum. In addition, the temperature dependence of the spectrum is theoretically captured by observing the changing population of these hydrate forms with temperature. We also explore an alternative method for obtaining statistically representative structures in a less demanding manner than MD simulations, derived from QM Wigner distributions. The combination of Wigner-sampling and GMM-NEA broadening shows promise for wide application in spectroscopic analysis and predictions, offering a computationally efficient alternative to traditional methods.
Collapse
Affiliation(s)
| | - Rafael R Pappalardo
- Department of Physical Chemistry, University of Seville, 41012 Seville, Spain
| | - Florent Réal
- Université de Lille, CNRS, UMR 8523-PhLAM, Physique des Lasers, Atomes et Molecules, F-59000 Lille, France
| | - Valérie Vallet
- Université de Lille, CNRS, UMR 8523-PhLAM, Physique des Lasers, Atomes et Molecules, F-59000 Lille, France
| | | |
Collapse
|
2
|
Nguyen Thi Minh N, König C. The role of microenvironments on computed vibrationally-resolved emission spectra: The case of oxazines. J Comput Chem 2024; 45:2232-2241. [PMID: 38831461 DOI: 10.1002/jcc.27385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024]
Abstract
Oxazine dyes act as reporters of their near environment by the response of their fluorescence spectra. At the same time, their fluorescence spectra exhibit a pronounced vibrational progression. In this work, we computationally investigate the impact of near-environment models consisting of aggregated water as well as betaine molecules on the vibrational profile of fluorescence spectra of different oxazine derivatives. For aggregated betaine and a water molecule located above the plane of the dyes, we observe a distinct modification of the vibrational profile, which is more pronounced than the effect of a continuum description of a solvent environment. Our analysis shows that this effect cannot be explained by a pure change in the electronic structure, but that also vibrational degrees of freedom of the environment can be decisive for the vibrational profile and should, hence, not generally be neglected.
Collapse
Affiliation(s)
- Nghia Nguyen Thi Minh
- Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, Hannover, Germany
| | - Carolin König
- Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
3
|
Cerezo J, Gierschner J, Santoro F, Prampolini G. Explicit Modelling of Spectral Bandshapes by a Mixed Quantum-Classical Approach: Solvent Order and Temperature Effects in the Optical Spectra of Distyrylbenzene. Chemphyschem 2024; 25:e202400307. [PMID: 38728539 DOI: 10.1002/cphc.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
The absorption and emission spectral shapes of a flexible organic probe, the distyrylbenzene (DSB) dye, are simulated accounting for the effect of different environments of increasing complexity, ranging from a homogeneous, low-molecular- weight solvent, to a long-chain alkane, and, eventually, a channel-forming organic matrix. Each embedding is treated explicitly, adopting a mixed quantum-classical approach, the Adiabatic Molecular Dynamics - generalized vertical Hessian (Ad-MD|gVH) model, which allows a direct simulation of the environment-induced constraining effects on the vibronic spectral shapes. In such a theoretical framework, the stiff modes of the dye are described at a quantum level within the harmonic approximation, including Duschinsky mixing effects, while flexible degrees of freedom of the solute (e. g. torsions) and those of the solvent are treated classically by means of molecular dynamics sampling. Such a setup is shown to reproduce the distinct effects exerted by the different environments in varied thermodynamic conditions. Besides allowing for a first-principles rationale on the supramolecular mechanism leading to the experimental spectral features, this result represents the first successful application of the Ad-MD|gVH method to complex embeddings and supports its potential application to other heterogeneous environments, such as for instance, pigment-protein complexes or organic dyes adsorbed into metal-organic frameworks.
Collapse
Affiliation(s)
- Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), 50019, Sesto Fiorentino, Italien
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), 50019, Sesto Fiorentino, Italien
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti OrganoMetallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), 50019, Sesto Fiorentino, Italien
| |
Collapse
|
4
|
Khanna A, Shedge SV, Zuehlsdorff TJ, Isborn CM. Calculating absorption and fluorescence spectra for chromophores in solution with ensemble Franck-Condon methods. J Chem Phys 2024; 161:044121. [PMID: 39077907 DOI: 10.1063/5.0217080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Accurately modeling absorption and fluorescence spectra for molecules in solution poses a challenge due to the need to incorporate both vibronic and environmental effects, as well as the necessity of accurate excited state electronic structure calculations. Nuclear ensemble approaches capture explicit environmental effects, Franck-Condon methods capture vibronic effects, and recently introduced ensemble-Franck-Condon approaches combine the advantages of both methods. In this study, we present and analyze simulated absorption and fluorescence spectra generated with combined ensemble-Franck-Condon approaches for three chromophore-solvent systems and compare them to standard ensemble and Franck-Condon spectra, as well as to the experiment. Employing configurations obtained from ground and excited state ab initio molecular dynamics, three combined ensemble-Franck-Condon approaches are directly compared to each other to assess the accuracy and relative computational time. We find that the approach employing an average finite-temperature Franck-Condon line shape generates spectra nearly identical to the direct summation of an ensemble of Franck-Condon spectra at one-fourth of the computational cost. We analyze how the spectral simulation method, as well as the level of electronic structure theory, affects spectral line shapes and associated Stokes shifts for 7-nitrobenz-2-oxa-1,3-diazol-4-yl and Nile red in dimethyl sulfoxide and 7-methoxy coumarin-4-acetic acid in methanol. For the first time, our studies show the capability of combined ensemble-Franck-Condon methods for both absorption and fluorescence spectroscopy and provide a powerful tool for simulating linear optical spectra.
Collapse
Affiliation(s)
- Ajay Khanna
- Chemistry and Biochemistry, University of California Merced, Merced, California 95343, USA
| | - Sapana V Shedge
- Chemistry and Biochemistry, University of California Merced, Merced, California 95343, USA
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Christine M Isborn
- Chemistry and Biochemistry, University of California Merced, Merced, California 95343, USA
| |
Collapse
|
5
|
Oldani N, Freixas VM, Ondarse-Alvarez D, Sharifzadeh S, Gibson T, Tretiak S, Fernandez-Alberti S. Electronic Couplings versus Thermal Fluctuations in the Internal Conversion of Perylene Diimides: The Battle to Localize the Exciton. J Chem Theory Comput 2024; 20:5820-5828. [PMID: 38984946 DOI: 10.1021/acs.jctc.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Energy transfer processes among units of light-harvesting homo-oligomers impact the efficiency of these materials as components in organic optoelectronic devices such as solar cells. Perylene diimide (PDI), a prototypical dye, features exceptional light absorption and highly tunable optical and electronic properties. These properties can be modulated by varying the number of PDI units and linkers between them. Herein, atomistic nonadiabatic excited state molecular dynamics is used to explore the energy transfer during the internal conversion of acetylene and diacetylene bridged dimeric and trimeric PDIs. Our simulations reveal a significant impact of the bridge type on the transient exciton localization/delocalization between units of PDI dimers. After electronic relaxation, larger exciton delocalization occurs in the PDI dimer connected by the diacetylene bridge with respect to the one connected by the shorter acetylene bridge. These changes can be rationalized by the Frenkel exciton model. We outline a technique for deriving parameters for this model using inputs provided by nonadiabatic dynamics simulations. Frenkel exciton description reveals an interplay between the relative strengths of the diagonal and off-diagonal disorders. Moreover, atomistic simulations and the Frenkel exciton model of the PDI trimer systems corroborate in detail the localization properties of the exciton on the molecular units during the internal conversion to the lowest-energy excited state when the units become effectively decoupled. Overall, atomistic nonadiabatic simulations in combination with the Frenkel exciton model can serve as a predictive framework for analyzing and predicting desired exciton traps in PDI-based oligomers designed for organic electronics and photonic devices.
Collapse
Affiliation(s)
- Nicolas Oldani
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Victor M Freixas
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Dianelys Ondarse-Alvarez
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Sahar Sharifzadeh
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Tammie Gibson
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | |
Collapse
|
6
|
Dellai A, Naim C, Cerezo J, Prampolini G, Castet F. Dynamic effects on the nonlinear optical properties of donor acceptor stenhouse adducts: insights from combined MD + QM simulations. Phys Chem Chem Phys 2024; 26:13639-13654. [PMID: 38511505 DOI: 10.1039/d4cp00310a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The second-order nonlinear optical (NLO) responses of a donor-acceptor stenhouse adduct (DASA) are investigated by using a computational approach combining molecular dynamics simulations and density functional theory (DFT) calculations. Specific force fields for the open and closed photoswitching forms are first parameterized and validated according to the Joyce protocol, in order to finely reproduce the geometrical features and potential energy surfaces of both isomers in chloroform solution. Then, DFT calculations are performed on structural snapshots extracted at regular time steps of the MD trajectories to address the influence of the thermalized conformational dynamics on the NLO responses related to hyper-Rayleigh scattering (HRS) experiments. We show that accounting for the structural dynamics largely enhances the HRS hyperpolarizability (βHRS) compared to DFT calculations considering solely equilibrium geometries, and greatly improves the agreement with experimental measurements. Furthermore, we show that the NLO responses of the NLO-active open form are correlated with the bond order alternation along the triene bridge connecting the donor and acceptor moieties, which is rationalized using simple essential state models.
Collapse
Affiliation(s)
- Angela Dellai
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | - Carmelo Naim
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain
| | - Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
7
|
do Casal MT, Veys K, Bousquet MHE, Escudero D, Jacquemin D. First-Principles Calculations of Excited-State Decay Rate Constants in Organic Fluorophores. J Phys Chem A 2023; 127:10033-10053. [PMID: 37988002 DOI: 10.1021/acs.jpca.3c06191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In this Perspective, we discuss recent advances made to evaluate from first-principles the excited-state decay rate constants of organic fluorophores, focusing on the so-called static strategy. In this strategy, one essentially takes advantage of Fermi's golden rule (FGR) to evaluate rate constants at key points of the potential energy surfaces, a procedure that can be refined in a variety of ways. In this way, the radiative rate constant can be straightforwardly obtained by integrating the fluorescence line shape, itself determined from vibronic calculations. Likewise, FGR allows for a consistent calculation of the internal conversion (related to the non-adiabatic couplings) in the weak-coupling regime and intersystem crossing rates, therefore giving access to estimates of the emission yields when no complex photophysical phenomenon is at play. Beyond outlining the underlying theories, we summarize here the results of benchmarks performed for various types of rates, highlighting that both the quality of the vibronic calculations and the accuracy of the relative energies are crucial to reaching semiquantitative estimates. Finally, we illustrate the successes and challenges in determining the fluorescence quantum yields using a series of organic fluorophores.
Collapse
Affiliation(s)
- Mariana T do Casal
- Department of Chemistry, Physical Chemistry and Quantum Chemistry Division, KU Leuven, 3001 Leuven, Belgium
| | - Koen Veys
- Department of Chemistry, Physical Chemistry and Quantum Chemistry Division, KU Leuven, 3001 Leuven, Belgium
| | | | - Daniel Escudero
- Department of Chemistry, Physical Chemistry and Quantum Chemistry Division, KU Leuven, 3001 Leuven, Belgium
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), FR-75005 Paris, France
| |
Collapse
|
8
|
Cerezo J, Gao S, Armaroli N, Ingrosso F, Prampolini G, Santoro F, Ventura B, Pastore M. Non-Phenomenological Description of the Time-Resolved Emission in Solution with Quantum-Classical Vibronic Approaches-Application to Coumarin C153 in Methanol. Molecules 2023; 28:molecules28093910. [PMID: 37175320 PMCID: PMC10180259 DOI: 10.3390/molecules28093910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
We report a joint experimental and theoretical work on the steady-state spectroscopy and time-resolved emission of the coumarin C153 dye in methanol. The lowest energy excited state of this molecule is characterized by an intramolecular charge transfer thus leading to remarkable shifts of the time-resolved emission spectra, dictated by the methanol reorganization dynamics. We selected this system as a prototypical test case for the first application of a novel computational protocol aimed at the prediction of transient emission spectral shapes, including both vibronic and solvent effects, without applying any phenomenological broadening. It combines a recently developed quantum-classical approach, the adiabatic molecular dynamics generalized vertical Hessian method (Ad-MD|gVH), with nonequilibrium molecular dynamics simulations. For the steady-state spectra we show that the Ad-MD|gVH approach is able to reproduce quite accurately the spectral shapes and the Stokes shift, while a ∼0.15 eV error is found on the prediction of the solvent shift going from gas phase to methanol. The spectral shape of the time-resolved emission signals is, overall, well reproduced, although the simulated spectra are slightly too broad and asymmetric at low energies with respect to experiments. As far as the spectral shift is concerned, the calculated spectra from 4 ps to 100 ps are in excellent agreement with experiments, correctly predicting the end of the solvent reorganization after about 20 ps. On the other hand, before 4 ps solvent dynamics is predicted to be too fast in the simulations and, in the sub-ps timescale, the uncertainty due to the experimental time resolution (300 fs) makes the comparison less straightforward. Finally, analysis of the reorganization of the first solvation shell surrounding the excited solute, based on atomic radial distribution functions and orientational correlations, indicates a fast solvent response (≈100 fs) characterized by the strengthening of the carbonyl-methanol hydrogen bond interactions, followed by the solvent reorientation, occurring on the ps timescale, to maximize local dipolar interactions.
Collapse
Affiliation(s)
- Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Sheng Gao
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Nicola Armaroli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Francesca Ingrosso
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| | - Giacomo Prampolini
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Fabrizio Santoro
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Barbara Ventura
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| |
Collapse
|
9
|
Cerezo J, García-Iriepa C, Santoro F, Navizet I, Prampolini G. Unraveling the contributions to the spectral shape of flexible dyes in solution: insights on the absorption spectrum of an oxyluciferin analogue. Phys Chem Chem Phys 2023; 25:5007-5020. [PMID: 36722876 DOI: 10.1039/d2cp05701h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We present a computational investigation of the absorption spectrum in water of 5,5-spirocyclopropyl-oxyluciferin (5,5-CprOxyLH), an analogue of the emitter compound responsible for the bioluminescence in fireflies. Several factors participate in determining the 5,5-CprOxyLH's spectral shape: (i) the contribution of the four close-energy excited states, which show significant non-adiabatic couplings, (ii) the flexible molecular structure and (iii) the specific interactions established with the surrounding environment, which strongly couple the protic solvent dynamics with the dye's spectral response. To tackle the challenge to capture and dissect the role of all these effects we preliminarily investigate the role of non-adiabatic couplings with quantum dynamics simulations and a linear vibronic coupling model in the gas phase. Then, we account for both the molecular flexibility and solvent interactions by resorting to a mixed quantum classical protocol, named Adiabatic Molecular Dynamics generalized Vertical Gradient (Ad-MD|gVG), which is built on a method recently proposed by some of us. It is rooted in the partition between stiff degrees of freedom of the dye, accounted for at the vibronic level within the harmonic approximation, and flexible degrees of freedom of the solute (and of the solvent), described classically through a sampling based on Molecular Dynamics (MD). Ad-MD|gVG avoids spurious effects arising in the excited state Hessians due to non-adiabatic couplings, and can therefore be applied to account for the contributions of the first four excited states to the 5,5-CprOxyLH absorption spectrum. The final simulated spectrum is in very good agreement with the experiment, especially when the MD is driven by a refined quantum-mechanically derived force-field. More importantly, the origin of each separate contribution to the spectral shape is appropriately accounted for, paving the way to future applications of the method to more complex systems or alternative spectroscopies, as emission or circular dichroism.
Collapse
Affiliation(s)
- Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain. .,CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - Cristina García-Iriepa
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Grupo de Reactividad y Estructura Molecular (RESMOL), 28806 Alcalá de Henares (Madrid), Spain. .,Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28806 Alcalá de Henares (Madrid), Spain
| | - Fabrizio Santoro
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - Isabelle Navizet
- Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France
| | - Giacomo Prampolini
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| |
Collapse
|
10
|
Green JA, Gómez S, Worth G, Santoro F, Improta R. Solvent Effects on Ultrafast Charge Transfer Population: Insights from the Quantum Dynamics of Guanine-Cytosine in Chloroform. Chemistry 2022; 28:e202201731. [PMID: 35950519 PMCID: PMC9828530 DOI: 10.1002/chem.202201731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 01/12/2023]
Abstract
We study the ultrafast photoactivated dynamics of the hydrogen bonded dimer Guanine-Cytosine in chloroform solution, focusing on the population of the Guanine→Cytosine charge transfer state (GC-CT), an important elementary process for the photophysics and photochemistry of nucleic acids. We integrate a quantum dynamics propagation scheme, based on a linear vibronic model parameterized through time dependent density functional theory calculations, with four different solvation models, either implicit or explicit. On average, after 50 fs, 30∼40 % of the bright excited state population has been transferred to GC-CT. This process is thus fast and effective, especially when transferring from the Guanine bright excited states, in line with the available experimental studies. Independent of the adopted solvation model, the population of GC-CT is however disfavoured in solution with respect to the gas phase. We show that dynamical solvation effects are responsible for this puzzling result and assess the different chemical-physical effects modulating the population of CT states on the ultrafast time-scale. We also propose some simple analyses to predict how solvent can affect the population transfer between bright and CT states, showing that the effect of the solute/solvent electrostatic interactions on the energy of the CT state can provide a rather reliable indication of its possible population.
Collapse
Affiliation(s)
- James A. Green
- Istituto di Biostrutture e Bioimmagini-CNRVia De Amicis 95I-80145Napoli
| | - Sandra Gómez
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUnited Kingdom
- Departamento de Química FísicaUniversity of SalamancaSalamanca37008Spain
| | - Graham Worth
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUnited Kingdom
| | - Fabrizio Santoro
- Istituto di Chimica die Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNRVia Moruzzi 1I-56124Pisa
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNRVia De Amicis 95I-80145Napoli
| |
Collapse
|
11
|
Nguyen Thi Minh N, König C. Tailored anharmonic-harmonic vibrational profiles for fluorescent biomarkers. Phys Chem Chem Phys 2022; 24:14825-14835. [PMID: 35695163 DOI: 10.1039/d2cp01486f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose a hybrid anharmonic-harmonic scheme for vibrational broadenings, which embeds a reduced-space vibrational configuration interaction (VCI) anharmonic wave function treatment in the independent-mode displaced harmonic oscillator (IMDHO) model. The resulting systematically-improvable VCI-in-IMDHO model allows including the vibronic effects of all vibrational degrees of freedom, while focusing the effort on the important degrees of freedom with minimal extra computational effort compared to a reduced-space VCI treatment. We show for oligothiophene examples that the VCI-in-IMDHO approach can yield accurate vibrational profiles employing smaller vibrational spaces in the VCI part than the reduced-space VCI approach. By this, the VCI-in-IMDHO model enables accurate calculation of vibrational profiles of common fluorescent dyes with more than 100 vibrational degrees of freedom. We illustrate this for three examples of fluorescent biomarkers of current interest. These are the oligothiophene-based fluorescent dye called HS84, 1,4-diphenylbutadiene, and an anthracene diimide. For all examples, we assess the impact of the anharmonic treatment on the vibrational broadening, which we find to be more pronounced for the intensities than for the peak positions.
Collapse
Affiliation(s)
- Nghia Nguyen Thi Minh
- Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, Callinstr. 3A, 30167 Hannover, Germany.
| | - Carolin König
- Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover, Callinstr. 3A, 30167 Hannover, Germany.
| |
Collapse
|
12
|
Segalina A, Aranda D, Green JA, Cristino V, Caramori S, Prampolini G, Pastore M, Santoro F. How the Interplay among Conformational Disorder, Solvation, Local, and Charge-Transfer Excitations Affects the Absorption Spectrum and Photoinduced Dynamics of Perylene Diimide Dimers: A Molecular Dynamics/Quantum Vibronic Approach. J Chem Theory Comput 2022; 18:3718-3736. [PMID: 35377648 PMCID: PMC9202308 DOI: 10.1021/acs.jctc.2c00063] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 12/12/2022]
Abstract
In this contribution we present a mixed quantum-classical dynamical approach for the computation of vibronic absorption spectra of molecular aggregates and their nonadiabatic dynamics, taking into account the coupling between local excitations (LE) and charge-transfer (CT) states. The approach is based on an adiabatic (Ad) separation between the soft degrees of freedom (DoFs) of the system and the stiff vibrations, which are described by the quantum dynamics (QD) of wave packets (WPs) moving on the coupled potential energy surfaces (PESs) of the LE and CT states. These PESs are described with a linear vibronic coupling (LVC) Hamiltonian, parameterized by an overlap-based diabatization on the grounds of time-dependent density functional theory computations. The WPs time evolution is computed with the multiconfiguration time-dependent Hartree method, using effective modes defined through a hierarchical representation of the LVC Hamiltonian. The soft DoFs are sampled with classical molecular dynamics (MD), and the coupling between the slow and fast DoFs is included by recomputing the key parameters of the LVC Hamiltonians, specifically for each MD configuration. This method, named Ad-MD|gLVC, is applied to a perylene diimide (PDI) dimer in acetonitrile and water solutions, and it is shown to accurately reproduce the change in the vibronic features of the absorption spectrum upon aggregation. Moreover, the microscopic insight offered by the MD trajectories allows for a detailed understanding of the role played by the fluctuation of the aggregate structure on the shape of the vibronic spectrum and on the population of LE and CT states. The nonadiabatic QD predicts an extremely fast (∼50 fs) energy transfer between the two LEs. CT states have only a moderate effect on the absorption spectrum, despite the fact that after photoexcitation they are shown to acquire a fast and non-negligible population, highlighting their relevance in dictating the charge separation and transport in PDI-based optical devices.
Collapse
Affiliation(s)
- Alekos Segalina
- Université
de Lorraine and CNRS, LPCT, UMR 7019, F-54000 Nancy, France
| | - Daniel Aranda
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, Catedrático J. Beltrán 2, 46980 Paterna, Valencia, Spain
| | - James A. Green
- Consiglio
Nazionale delle Ricerche, Istituto di Biostrutture
e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy
| | - Vito Cristino
- Dipartimento
di Scienze Chimiche, Farmaceutiche ed Agrarie, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Stefano Caramori
- Dipartimento
di Scienze Chimiche, Farmaceutiche ed Agrarie, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Giacomo Prampolini
- Istituto
di Chimica dei Composti Organo Metallici, Consiglio Nazionale delle Ricerche, (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi
1, I-56124 Pisa, Italy
| | | | - Fabrizio Santoro
- Istituto
di Chimica dei Composti Organo Metallici, Consiglio Nazionale delle Ricerche, (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi
1, I-56124 Pisa, Italy
| |
Collapse
|
13
|
Avagliano D, Lorini E, González L. Sampling effects in quantum mechanical/molecular mechanics trajectory surface hopping non-adiabatic dynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200381. [PMID: 35341304 PMCID: PMC8958275 DOI: 10.1098/rsta.2020.0381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/01/2021] [Indexed: 05/29/2023]
Abstract
The impact of different initial conditions in non-adiabatic trajectory surface hopping dynamics within a hybrid quantum mechanical/molecular mechanics scheme is investigated. The influence of a quantum sampling, based on a Wigner distribution, a fully thermal sampling, based on classical molecular dynamics, and a quantum sampled system, but thermally equilibrated with the environment, is investigated on the relaxation dynamics of solvated fulvene after light irradiation. We find that the decay from the first singlet excited state to the ground state shows high dependency on the initial condition and simulation parameters. The three sampling methods lead to different distributions of initial geometries and momenta, which then affect the fate of the excited state dynamics. We evaluated both the effect of sampling geometries and momenta, analysing how the ultrafast decay of fulvene changes accordingly. The results are expected to be of interest to decide how to initialize non-adiabatic dynamics in the presence of the environment. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.
Collapse
Affiliation(s)
- Davide Avagliano
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| | - Emilio Lorini
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| | - Leticia González
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| |
Collapse
|
14
|
Ni W, Gurzadyan GG, Sun L, Gelin MF. Toward efficient photochemistry from upper excited electronic states: Detection of long S 2 lifetime of perylene. J Chem Phys 2021; 155:191102. [PMID: 34800965 DOI: 10.1063/5.0069398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A long 0.9 ps lifetime of the upper excited singlet state in perylene is resolved by femtosecond pump-probe measurements under ultraviolet (4.96 eV) excitation and further validated by theoretical simulations of transient absorption kinetics. This finding prompts exploration and development of novel perylene-based materials for upper excited state photochemistry applications.
Collapse
Affiliation(s)
- Wenjun Ni
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology, 116024 Dalian, China
| | - Gagik G Gurzadyan
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 310024 Hangzhou, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology, 116024 Dalian, China
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, China
| |
Collapse
|
15
|
Segatta F, Russo M, Nascimento DR, Presti D, Rigodanza F, Nenov A, Bonvicini A, Arcioni A, Mukamel S, Maiuri M, Muccioli L, Govind N, Cerullo G, Garavelli M. In Silico Ultrafast Nonlinear Spectroscopy Meets Experiments: The Case of Perylene Bisimide Dye. J Chem Theory Comput 2021; 17:7134-7145. [PMID: 34676761 PMCID: PMC8582250 DOI: 10.1021/acs.jctc.1c00570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Spectroscopy simulations are of paramount importance for the interpretation of experimental electronic spectra, the disentangling of overlapping spectral features, and the tracing of the microscopic origin of the observed signals. Linear and nonlinear simulations are based on the results drawn from electronic structure calculations that provide the necessary parameterization of the molecular systems probed by light. Here, we investigate the applicability of excited-state properties obtained from linear-response time-dependent density functional theory (TDDFT) in the description of nonlinear spectra by employing the pseudowavefunction approach and compare them with benchmarks from highly accurate RASSCF/RASPT2 calculations and with high temporal resolution experimental results. As a test case, we consider the prediction of femtosecond transient absorption and two-dimensional electronic spectroscopy of a perylene bisimide dye in solution. We find that experimental signals are well reproduced by both theoretical approaches, showing that the computationally cheaper TDDFT can be a suitable option for the simulation of nonlinear spectroscopy of molecular systems that are too large to be treated with higher-level RASSCF/RASPT2 methods.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Mattia Russo
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, P. Leonardo da Vinci 32, Milan I-20133, Italy
| | - Daniel R. Nascimento
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Davide Presti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Francesco Rigodanza
- Dipartimento
di Scienze Chimiche, Università degli
studi di Padova, Via
F. Marzolo, Padova I-35131, Italy
| | - Artur Nenov
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Andrea Bonvicini
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Alberto Arcioni
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Margherita Maiuri
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, P. Leonardo da Vinci 32, Milan I-20133, Italy
| | - Luca Muccioli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| | - Niranjan Govind
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Giulio Cerullo
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, P. Leonardo da Vinci 32, Milan I-20133, Italy
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, Bologna I-40136, Italy
| |
Collapse
|
16
|
Borrego-Sánchez A, Zemmouche M, Carmona-García J, Francés-Monerris A, Mulet P, Navizet I, Roca-Sanjuán D. Multiconfigurational Quantum Chemistry Determinations of Absorption Cross Sections (σ) in the Gas Phase and Molar Extinction Coefficients (ε) in Aqueous Solution and Air-Water Interface. J Chem Theory Comput 2021; 17:3571-3582. [PMID: 33974417 PMCID: PMC8444339 DOI: 10.1021/acs.jctc.0c01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 11/29/2022]
Abstract
Theoretical determinations of absorption cross sections (σ) in the gas phase and molar extinction coefficients (ε) in condensed phases (water solution, interfaces or surfaces, protein or nucleic acids embeddings, etc.) are of interest when rates of photochemical processes, J = ∫ ϕ(λ) σ(λ) I(λ) dλ, are needed, where ϕ(λ) and I(λ) are the quantum yield of the process and the irradiance of the light source, respectively, as functions of the wavelength λ. Efficient computational strategies based on single-reference quantum-chemistry methods have been developed enabling determinations of line shapes or, in some cases, achieving rovibrational resolution. Developments are however lacking for strongly correlated problems, with many excited states, high-order excitations, and/or near degeneracies between states of the same and different spin multiplicities. In this work, we define and compare the performance of distinct computational strategies using multiconfigurational quantum chemistry, nuclear sampling of the chromophore (by means of molecular dynamics, ab initio molecular dynamics, or Wigner sampling), and conformational and statistical sampling of the environment (by means of molecular dynamics). A new mathematical approach revisiting previous absolute orientation algorithms is also developed to improve alignments of geometries. These approaches are benchmarked through the nπ* band of acrolein not only in the gas phase and water solution but also in a gas-phase/water interface, a common situation for instance in atmospheric chemistry. Subsequently, the best strategy is used to compute the absorption band for the adduct formed upon addition of an OH radical to the C6 position of uracil and compared with the available experimental data. Overall, quantum Wigner sampling of the chromophore with molecular dynamics sampling of the environment with CASPT2 electronic-structure determinations arise as a powerful methodology to predict meaningful σ(λ) and ε(λ) band line shapes with accurate absolute intensities.
Collapse
Affiliation(s)
- Ana Borrego-Sánchez
- Instituto
Andaluz de Ciencias de la Tierra, CSIC-University
of Granada, Av. de las
Palmeras 4, 18100 Armilla, Granada, Spain
| | - Madjid Zemmouche
- MSME,
Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris-Est Créteil 8208, F-77454 Marne-la-Vallée, France
| | - Javier Carmona-García
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, València, Spain
| | - Antonio Francés-Monerris
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Departamento
de Química Física, Universitat
de València, C/Dr.
Moliner 50, 46100 Burjassot, Spain
| | - Pep Mulet
- Departamento
de Matemáticas Área de Matemática Aplicada Facultad
de Matemáticas C/Dr. Moliner, 50 46100 Burjassot, Spain
| | - Isabelle Navizet
- MSME,
Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris-Est Créteil 8208, F-77454 Marne-la-Vallée, France
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, València, Spain
| |
Collapse
|
17
|
Santoro F, Green JA, Martinez-Fernandez L, Cerezo J, Improta R. Quantum and semiclassical dynamical studies of nonadiabatic processes in solution: achievements and perspectives. Phys Chem Chem Phys 2021; 23:8181-8199. [PMID: 33875988 DOI: 10.1039/d0cp05907b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We concisely review the main methodological approaches to model nonadiabatic dynamics in isotropic solutions and their applications. Three general classes of models are identified as the most used to include solvent effects in the simulations. The first model describes the solvent as a set of harmonic collective modes coupled to the solute degrees of freedom, and the second as a continuum, while the third explicitly includes solvent molecules in the calculations. The issues related to the use of these models in semiclassical and quantum dynamical simulations are discussed, as well as the main limitations and perspectives of each approach.
Collapse
Affiliation(s)
- Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - James A Green
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Javier Cerezo
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Roberto Improta
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| |
Collapse
|
18
|
Shedge SV, Zuehlsdorff TJ, Khanna A, Conley S, Isborn CM. Explicit environmental and vibronic effects in simulations of linear and nonlinear optical spectroscopy. J Chem Phys 2021; 154:084116. [PMID: 33639769 DOI: 10.1063/5.0038196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accurately simulating the linear and nonlinear electronic spectra of condensed phase systems and accounting for all physical phenomena contributing to spectral line shapes presents a significant challenge. Vibronic transitions can be captured through a harmonic model generated from the normal modes of a chromophore, but it is challenging to also include the effects of specific chromophore-environment interactions within such a model. We work to overcome this limitation by combining approaches to account for both explicit environment interactions and vibronic couplings for simulating both linear and nonlinear optical spectra. We present and show results for three approaches of varying computational cost for combining ensemble sampling of chromophore-environment configurations with Franck-Condon line shapes for simulating linear spectra. We present two analogous approaches for nonlinear spectra. Simulated absorption spectra and two-dimensional electronic spectra (2DES) are presented for the Nile red chromophore in different solvent environments. Employing an average Franck-Condon or 2DES line shape appears to be a promising method for simulating linear and nonlinear spectroscopy for a chromophore in the condensed phase.
Collapse
Affiliation(s)
- Sapana V Shedge
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Ajay Khanna
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Stacey Conley
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| |
Collapse
|
19
|
Goletto L, Giovannini T, Folkestad SD, Koch H. Combining multilevel Hartree–Fock and multilevel coupled cluster approaches with molecular mechanics: a study of electronic excitations in solutions. Phys Chem Chem Phys 2021; 23:4413-4425. [DOI: 10.1039/d0cp06359b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the coupling of different quantum-embedding approaches with a third molecular-mechanics layer, which can be either polarizable or non-polarizable.
Collapse
Affiliation(s)
- Linda Goletto
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| | - Tommaso Giovannini
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| | - Sarai D. Folkestad
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| | | |
Collapse
|