1
|
Troup N, Kroonblawd MP, Donadio D, Goldman N. Quantum Simulations of Radiation Damage in a Molecular Polyethylene Analog. Macromol Rapid Commun 2024; 45:e2400669. [PMID: 39437200 DOI: 10.1002/marc.202400669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
An atomic-level understanding of radiation-induced damage in simple polymers like polyethylene is essential for determining how these chemical changes can alter the physical and mechanical properties of important technological materials such as plastics. Ensembles of quantum simulations of radiation damage in a polyethylene analog are performed using the Density Functional Tight Binding method to help bind its radiolysis and subsequent degradation as a function of radiation dose. Chemical degradation products are categorized with a graph theory approach, and occurrence rates of unsaturated carbon bond formation, crosslinking, cycle formation, chain scission reactions, and out-gassing products are computed. Statistical correlations between product pairs show significant correlations between chain scission reactions, unsaturated carbon bond formation, and out-gassing products, though these correlations decrease with increasing atom recoil energy. The results present relatively simple chemical descriptors as possible indications of network rearrangements in the middle range of excitation energies. Ultimately, the work provides a computational framework for determining the coupling between nonequilibrium chemistry in polymers and potential changes to macro-scale properties that can aid in the interpretation of future radiation damage experiments on plastic materials.
Collapse
Affiliation(s)
- Nathaniel Troup
- Department of Chemical Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Davide Donadio
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Nir Goldman
- Department of Chemical Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| |
Collapse
|
2
|
Khot A, Lindsey RK, Lewicki JP, Maiti A, Goldman N, Kroonblawd MP. United atom and coarse grained models for crosslinked polydimethylsiloxane with applications to the rheology of silicone fluids. Phys Chem Chem Phys 2023; 25:9669-9684. [PMID: 36943730 DOI: 10.1039/d2cp04920a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Siloxane systems consisting primarily of polydimethylsiloxane (PDMS) are versatile, multifaceted materials that play a key role in diverse applications. However, open questions exist regarding the correlation between their varied atomic-level properties and observed macroscale features. To this effect, we have created a systematic workflow to determine coarse-grained simulation models for crosslinked PDMS in order to further elucidate the effects of network changes on the system's rheological properties below the gel point. Our approach leverages a fine-grained united atom model for linear PDMS, which we extend to include crosslinking terms, and applies iterative Boltzmann inversion to obtain a coarse-grain "bead-spring-type" model. We then perform extensive molecular dynamics simulations to explore the effect of crosslinking on the rheology of silicone fluids, where we compute systematic increases in both density and shear viscosity that compare favorably to experiments that we conduct here. The kinematic viscosity of partially crosslinked fluids follows an empirical linear relationship that is surprisingly consistent with Rouse theory, which was originally derived for systems comprised of a uniform distribution of linear chains. The models developed here serve to enable quantitative bottom-up predictions for curing- and age-induced effects on macroscale rheological properties, allowing for accurate prediction of material properties based on fundamental chemical data.
Collapse
Affiliation(s)
- Aditi Khot
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
- Department of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Rebecca K Lindsey
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - James P Lewicki
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Amitesh Maiti
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
- Department of Chemical Engineering, University of California, Davis, California 95616, USA
| | - Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| |
Collapse
|
3
|
Kroonblawd MP, Yoshimura A, Goldman N, Maiti A, Lewicki JP, Saab AP. Multiscale Strategy for Predicting Radiation Chemistry in Polymers. J Chem Theory Comput 2022; 18:5117-5124. [PMID: 35960960 DOI: 10.1021/acs.jctc.2c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A primary mode for radiation damage in polymers arises from ballistic electrons that induce electronic excitations, yet subsequent chemical mechanisms are poorly understood. We develop a multiscale strategy to predict this chemistry starting from subatomic scattering calculations. Nonadiabatic molecular dynamics simulations sample initial bond-breaking events following the most likely excitations, which feed into semiempirical simulations that approach chemical equilibrium. Application to polyethylene reveals a mechanism explaining the low propensity to cross-link in crystalline samples.
Collapse
Affiliation(s)
- Matthew P Kroonblawd
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Anthony Yoshimura
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Nir Goldman
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Amitesh Maiti
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - James P Lewicki
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Andrew P Saab
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
4
|
Swathi PV, Abdulkareem U, Kartha TR, Madhurima V. Hydrogen Bonding in 1‐Propanol‐Ethanol Binary Mixture: Experimental and Modeling Approaches. ChemistrySelect 2022. [DOI: 10.1002/slct.202200413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- P. V. Swathi
- Department of Physics School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610005 Tamil Nadu India
| | - U. Abdulkareem
- Department of Physics School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610005 Tamil Nadu India
| | - Thejus R Kartha
- International School of Engineering (INSOFE) 2nd Floor, Jyothi Imperial, Vamsiram Builders, Gachibowli Hyderabad Telangana 500032 India
| | - V. Madhurima
- Department of Physics School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610005 Tamil Nadu India
| |
Collapse
|
5
|
Kroonblawd MP, Goldman N, Maiti A, Lewicki JP. Polymer degradation through chemical change: a quantum-based test of inferred reactions in irradiated polydimethylsiloxane. Phys Chem Chem Phys 2022; 24:8142-8157. [PMID: 35332907 DOI: 10.1039/d1cp05647f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical reaction schemes are key conceptual tools for interpreting the results of experiments and simulations, but often carry implicit assumptions that remain largely unverified for complicated systems. Established schemes for chemical damage through crosslinking in irradiated silicone polymers comprised of polydimethylsiloxane (PDMS) date to the 1950's and correlate small-molecule off-gassing with specific crosslink features. In this regard, we use a somewhat reductionist model to develop a general conditional probability and correlation analysis approach that tests these types of causal connections between proposed experimental observables to reexamine this chemistry through quantum-based molecular dynamics (QMD) simulations. Analysis of the QMD simulations suggests that the established reaction schemes are qualitatively reasonable, but lack strong causal connections under a broad set of conditions that would enable making direct quantitative connections between off-gassing and crosslinking. Further assessment of the QMD data uncovers a strong (but nonideal) quantitative connection between exceptionally hard-to-measure chain scission events and the formation of silanol (Si-OH) groups. Our analysis indicates that conventional notions of radiation damage to PDMS should be further qualified and not necessarily used ad hoc. In addition, our efforts enable independent quantum-based tests that can inform confidence in assumed connections between experimental observables without the burden of fully elucidating entire reaction networks.
Collapse
Affiliation(s)
- Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Amitesh Maiti
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - James P Lewicki
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| |
Collapse
|
6
|
Maiti A, Small W, Kroonblawd MP, Lewicki JP, Goldman N, Wilson TS, Saab AP. Constitutive Model of Radiation Aging Effects in Filled Silicone Elastomers under Strain. J Phys Chem B 2021; 125:10047-10057. [PMID: 34450004 DOI: 10.1021/acs.jpcb.1c04958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Filled silicone elastomers, an essential component in many technological applications, are often subjected to controlled or unintended radiation for a variety of reasons. Radiation exposure can lead to permanent mechanical and structural changes in the material, which is manifested as altered mechanical response, and in some cases, a permanent set. For unfilled elastomers, network theories developed and refined over decades can explain these effects in terms of chain-scission and cross-link formation and a hypothesis involving independent networks formed at different strain levels of the material. Here, we expose a filled silicone rubber to gamma radiation while being under finite elongational strain and show that the observed mechanical and structural changes can be quantitatively modeled within the same theoretical framework developed for unfilled elastomers as long as nuances associated with the Mullins effect are accounted for in a consistent manner. In this work, we employ Ogden's incompressible hyperelastic model within the framework of Tobolsky's two-network scheme to describe the observed permanent set and mechanical modulus changes as a function of radiation dosage. In the process, we conclude that gamma radiation induces both direct cross-linking at chain crossings (H-links) and main-chain-scission followed by cross-linking (Y-links). We provide an estimate of the ratio of chain-scission to cross-linking rates, which is in reasonable agreement with previous experimental estimate from Charlesby-Pinner analysis. We use density functional theory (DFT)-based quantum mechanical calculations to explore the stability of -Si and -SiO radicals that form upon a radiation-induced chain-scission event, which sheds light on the relative rates of Y-linking and H-linking processes.
Collapse
Affiliation(s)
- A Maiti
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - W Small
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - M P Kroonblawd
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - J P Lewicki
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - N Goldman
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - T S Wilson
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - A P Saab
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
7
|
Liu Q, Huang W, Liu B, Wang PC, Chen HB. Gamma Radiation Chemistry of Polydimethylsiloxane Foam in Radiation-Thermal Environments: Experiments and Simulations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41287-41302. [PMID: 34410100 DOI: 10.1021/acsami.1c10765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The γ radiolysis behavior of polydimethylsiloxane (PDMS) in the radiation-thermal environments (dose rate, 0.2 Gy/s) is studied to pinpoint the basic knowledge of the temperature (20-70 °C) effects. The non-monotonous temperature effects on the formation of gas products, paramagnetic species in silica, and cross-linking density are proposed to correlate with the complex chemical reaction mechanisms. Besides, molecular dynamics simulation and theoretical calculation are first performed simultaneously based on the radical chemistry and intricate material composition, making it easier to comprehend and further harness the radiolysis mechanisms and structure deterioration of PDMS. The γ radiation-induced primary gas products and dominant cross-linking phenomena are reproduced by the molecular dynamics simulations with a reactive force field, and the reaction mechanisms and physicochemical interactions among PDMS chains, gas products, reactive radicals, and silica fillers are thoroughly studied at the atomic scale. The thermochemistry of the barrierless radical coupling reactions and reactions with explicit high-barrier transition states is calculated at the M06-2X theoretical level with the 6-311g(d, p) basis set. The barrierless reactions are all exothermal with the heat release of 321-618 kJ/mol, while the potential barriers for reactions with explicit transition states vary between 37 and 229 kJ/mol. The results show that γ radiation-induced radicals are crucial for the ensuing gas formation and cross-linking reactions, especially for the radical coupling reactions. The radical chemistry involved in the radiolytic PDMS is the key to understand and simulate its radiolysis behavior, according to the experimental and simulated results.
Collapse
Affiliation(s)
- Qiang Liu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621000, China
| | - Wei Huang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621000, China
| | - Bo Liu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621000, China
| | - Pu-Cheng Wang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621000, China
| | - Hong-Bing Chen
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621000, China
| |
Collapse
|