1
|
Pracht P, Grimme S, Bannwarth C, Bohle F, Ehlert S, Feldmann G, Gorges J, Müller M, Neudecker T, Plett C, Spicher S, Steinbach P, Wesołowski PA, Zeller F. CREST-A program for the exploration of low-energy molecular chemical space. J Chem Phys 2024; 160:114110. [PMID: 38511658 DOI: 10.1063/5.0197592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Conformer-rotamer sampling tool (CREST) is an open-source program for the efficient and automated exploration of molecular chemical space. Originally developed in Pracht et al. [Phys. Chem. Chem. Phys. 22, 7169 (2020)] as an automated driver for calculations at the extended tight-binding level (xTB), it offers a variety of molecular- and metadynamics simulations, geometry optimization, and molecular structure analysis capabilities. Implemented algorithms include automated procedures for conformational sampling, explicit solvation studies, the calculation of absolute molecular entropy, and the identification of molecular protonation and deprotonation sites. Calculations are set up to run concurrently, providing efficient single-node parallelization. CREST is designed to require minimal user input and comes with an implementation of the GFNn-xTB Hamiltonians and the GFN-FF force-field. Furthermore, interfaces to any quantum chemistry and force-field software can easily be created. In this article, we present recent developments in the CREST code and show a selection of applications for the most important features of the program. An important novelty is the refactored calculation backend, which provides significant speed-up for sampling of small or medium-sized drug molecules and allows for more sophisticated setups, for example, quantum mechanics/molecular mechanics and minimum energy crossing point calculations.
Collapse
Affiliation(s)
- Philipp Pracht
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Christoph Bannwarth
- Institute for Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52056 Aachen, Germany
| | - Fabian Bohle
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Sebastian Ehlert
- AI4Science, Microsoft Research, Evert van de Beekstraat 354, 1118 CZ Schiphol, The Netherlands
| | - Gereon Feldmann
- Institute for Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52056 Aachen, Germany
| | - Johannes Gorges
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Marcel Müller
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Tim Neudecker
- Institute for Physical and Theoretical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Christoph Plett
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | | | - Pit Steinbach
- Institute for Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52056 Aachen, Germany
| | - Patryk A Wesołowski
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Felix Zeller
- Institute for Physical and Theoretical Chemistry, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
2
|
Monari L, Galentino K, Cecchini M. ChemFlow_py: a flexible toolkit for docking and rescoring. J Comput Aided Mol Des 2023; 37:565-572. [PMID: 37620503 DOI: 10.1007/s10822-023-00527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
The design of accurate virtual screening tools is an open challenge in drug discovery. Several structure-based methods have been developed at different levels of approximation. Among them, molecular docking is an established technique with high efficiency, but typically low accuracy. Moreover, docking performances are known to be target-dependent, which makes the choice of the docking program and corresponding scoring function critical when approaching a new protein target. To compare the performances of different docking protocols, we developed ChemFlow_py, an automated tool to perform docking and rescoring. Using four protein systems extracted from DUD-E with 100 known active compounds and 3000 decoys per target, we compared the performances of several rescoring strategies including consensus scoring. We found that the average docking results can be improved by consensus ranking, which emphasizes the relevance of consensus scoring when little or no chemical information is available for a given target. ChemFlow_py is a free toolkit to optimize the performances of virtual high-throughput screening (vHTS). The software is publicly available at https://github.com/IFMlab/ChemFlow_py .
Collapse
Affiliation(s)
- Luca Monari
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, 67083, Strasbourg, Cedex, France
| | - Katia Galentino
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, 67083, Strasbourg, Cedex, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, 67083, Strasbourg, Cedex, France.
| |
Collapse
|
3
|
Yang Z, Fu X, Zhao Y, Li X, Long J, Zhang L. Molecular insights into the inhibition mechanism of harringtonine against essential proteins associated with SARS-CoV-2 entry. Int J Biol Macromol 2023; 240:124352. [PMID: 37054859 PMCID: PMC10085973 DOI: 10.1016/j.ijbiomac.2023.124352] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/11/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has recently posed a serious threat to global public health. Harringtonine (HT), as a small-molecule antagonist, has antiviral activity against a variety of viruses. There is evidence that HT can inhibit the SARS-CoV-2 entry into host cells by blocking the Spike protein and transmembrane protease serine 2 (TMPRSS2). However, the molecular mechanism underlying the inhibition effect of HT is largely elusive. Here, docking and all-atom molecular dynamics simulations were used to investigate the mechanism of HT against the receptor binding domain (RBD) of Spike, TMPRSS2, as well as the complex of RBD and angiotensin-converting enzyme 2 complex (RBD-ACE2). The results reveal that HT binds to all proteins primarily through hydrogen bond and hydrophobic interactions. Binding with HT influences the structural stability and dynamic motility processes of each protein. The interactions of HT with residues N33, H34 and K353 of ACE2, and residue K417 and Y453 of RBD contribute to disrupting the binding affinity between RBD and ACE2, which may hinder the virus entry into host cells. Our research provides molecular insights into the inhibition mechanism of HT against SARS-CoV-2 associated proteins, which will help for the novel antiviral drugs development.
Collapse
Affiliation(s)
- Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xinyue Fu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiangang Long
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
4
|
Barreto Gomes D, Galentino K, Sisquellas M, Monari L, Bouysset C, Cecchini M. ChemFlow─From 2D Chemical Libraries to Protein-Ligand Binding Free Energies. J Chem Inf Model 2023; 63:407-411. [PMID: 36603846 PMCID: PMC9875305 DOI: 10.1021/acs.jcim.2c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 01/07/2023]
Abstract
The accurate prediction of protein-ligand binding affinities is a fundamental problem for the rational design of new drug entities. Current computational approaches are either too expensive or inaccurate to be effectively used in virtual high-throughput screening campaigns. In addition, the most sophisticated methods, e.g., those based on configurational sampling by molecular dynamics, require significant pre- and postprocessing to provide a final ranking, which hinders straightforward applications by nonexpert users. We present a novel computational platform named ChemFlow to bridge the gap between 2D chemical libraries and estimated protein-ligand binding affinities. The software is designed to prepare a library of compounds provided in SMILES or SDF format, dock them into the protein binding site, and rescore the poses by simplified free energy calculations. Using a data set of 626 protein-ligand complexes and GPU computing, we demonstrate that ChemFlow provides relative binding free energies with an RMSE < 2 kcal/mol at a rate of 1000 ligands per day on a midsize computer cluster. The software is publicly available at https://github.com/IFMlab/ChemFlow.
Collapse
Affiliation(s)
- Diego
E. Barreto Gomes
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France
- Department
of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Katia Galentino
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France
| | - Marion Sisquellas
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France
| | - Luca Monari
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France
| | - Cédric Bouysset
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France
| | - Marco Cecchini
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France
| |
Collapse
|
5
|
Bartocci A, Pereira G, Cecchini M, Dumont E. Capturing the Recognition Dynamics of para-Sulfonato-calix[4]arenes by Cytochrome c: Toward a Quantitative Free Energy Assessment. J Chem Inf Model 2022; 62:6739-6748. [PMID: 36054284 DOI: 10.1021/acs.jcim.2c00483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Calix[n]arenes' selective recognition of protein surfaces covers a broad range of timely applications, from controlling protein assembly and crystallization to trapping partially disordered proteins. Here, the interaction of para-sulfonated calix-[4]-arenes with cytochrome c is investigated through all-atom, explicit water molecular dynamics simulations which allow characterization of two binding sites in quantitative agreement with experimental evidence. Free energy calculations based on the MM-PBSA and the attach-pull-release (APR) methods highlight key residues implicated in the recognition process and provide binding free energy results in quantitative agreement with isothermal titration calorimetry. Our study emphasizes the role of MD simulations to capture and describe the "walk" of sulfonated calix-[4]-arenes on the cytochrome c surface, with the arginine R13 as a pivotal interacting residue. Our MD investigation allows, through the quasi-harmonic multibasin (QHMB) method, probing an allosteric reinforcement of several per-residue interactions upon calixarene binding, which suggests a more complex mode of action of these supramolecular auxiliaries.
Collapse
Affiliation(s)
- Alessio Bartocci
- Laboratoire de Chimie, Ecole Normale Superieure de Lyon, F-69342 Lyon, France.,Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg 67083, France
| | - Gilberto Pereira
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg 67083, France.,Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS & University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg 67083, France
| | - Elise Dumont
- Laboratoire de Chimie, Ecole Normale Superieure de Lyon, F-69342 Lyon, France.,Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| |
Collapse
|
6
|
Díaz N, Suárez D. Toward Reliable and Insightful Entropy Calculations on Flexible Molecules. J Chem Theory Comput 2022; 18:7166-7178. [PMID: 36426866 DOI: 10.1021/acs.jctc.2c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The absolute entropy of a flexible molecule can be approximated by the sum of a rigid-rotor-harmonic-oscillator (RRHO) entropy and a Gibbs-Shannon entropy associated to the Boltzmann distribution for the occupation of the conformational energy levels. Herein, we show that such partitioning, which has received renewed interest, leads to accurate entropies of single molecules of increasing size provided that the conformational part is estimated by means of a set of discretization and expansion techniques that are able to capture the significant correlation effects among the torsional motions. To ensure a reliable entropy estimation, we rely on extensive sampling as that produced by classical molecular dynamics simulations on the microsecond time scale, which is currently affordable for small- and medium-sized molecules. According to test calculations, the gas-phase entropy of simple organic molecules is predicted with a mean unsigned error of 0.9 cal/(mol K) when the RRHO entropies are computed at the B3LYP-D3/cc-pVTZ level. Remarkably, the same protocol gives small errors [<1 cal/(mol K)] for the extremely flexible linear alkane molecules (CnH2n+2, n = 14, 16, and 18). Similarly, we obtain well-converged entropies for a more challenging test of drug molecules, which exhibit more pronounced correlation effects. We also perform equivalent entropy calculations on a 76 amino acid protein, ubiquitin, by taking advantage of the cutoff-dependent formulation of an expansion technique (correlation-consistent multibody local approximation, CC-MLA), which incorporates genuine correlation effects among the neighboring dihedral angles. Moreover, we show that insightful descriptors of the coupled torsional motions can be obtained with the CC-MLA approach.
Collapse
Affiliation(s)
- Natalia Díaz
- Departamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería 8, Oviedo33006, SPAIN
| | - Dimas Suárez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería 8, Oviedo33006, SPAIN
| |
Collapse
|
7
|
Xing H, Yang L, Wang L, Wang L, Meng Q, Li M, Lu D, Ye G, Liu H. Solvent effects on the interaction between alkali metal cations and 1,3-Diisopropoxycalix [4] arenecrown-6: Nuclear magnetic resonance spectroscopy and Independent Gradient Model Non-Covalent interactions analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Gorges J, Grimme S, Hansen A, Pracht P. Towards understanding solvation effects on the conformational entropy of non-rigid molecules. Phys Chem Chem Phys 2022; 24:12249-12259. [PMID: 35543018 DOI: 10.1039/d1cp05805c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The absolute molecular entropy is a fundamental quantity for the accurate description of thermodynamic properties. For non-rigid molecules, a substantial part of the entropy can be attributed to a conformational contribution. Systems and properties where this is relevant, e.g., protein-ligand binding affinities or pKa values refer usually to the liquid phase. In this work, the influence of solvation on the conformational entropy is investigated. A recently introduced state-of-the-art and automated computational protocol for the computation of conformational entropies [Pracht et al., Chem. Sci., 2021, 12, 6551-6568.] is applied in combination with fast and accurate semiempirical quantum-chemical methods and implicit solvation models for a set of 25 commercially available drug molecules and five transition metal compounds. Computed gas-phase conformational entropies are compared with values obtained in implicit n-hexane and water. It is found that implicit solvation can have a substantial effect of several cal mol-1 K-1 on the entropy as a result of large conformational changes in the different phases. We conclude that for flexible molecules chemical accuracy for free energies in solution can only be achieved if solvation effects on the conformational ensemble are considered.
Collapse
Affiliation(s)
- Johannes Gorges
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Philipp Pracht
- Institute for Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52056 Aachen, Germany.
| |
Collapse
|
9
|
Pracht P, Grimme S. Calculation of absolute molecular entropies and heat capacities made simple. Chem Sci 2021; 12:6551-6568. [PMID: 34040731 PMCID: PMC8139639 DOI: 10.1039/d1sc00621e] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
We propose a fully-automated composite scheme for the accurate and numerically stable calculation of molecular entropies by efficiently combining density-functional theory (DFT), semi-empirical methods (SQM), and force-field (FF) approximations. The scheme is systematically expandable and can be integrated seamlessly with continuum-solvation models. Anharmonic effects are included through the modified rigid-rotor-harmonic-oscillator (msRRHO) approximation and the Gibbs-Shannon formula for extensive conformer ensembles (CEs), which are generated by a metadynamics search algorithm and are extrapolated to completeness. For the first time, variations of the ro-vibrational entropy over the CE are consistently accounted-for through a Boltzmann-population average. Extensive tests of the protocol with the two standard DFT approaches B97-3c and B3LYP-D3 reveal an unprecedented accuracy with mean deviations <1 cal mol-1 K-1 (about <1-2%) for the total gas phase molecular entropy of medium-sized molecules. Even for the hardship case of extremely flexible linear alkanes (C14H30-C16H34), errors are only about 3 cal mol-1 K-1. Comprehensive tests indicate a relatively strong variation of the conformational entropy on the underlying level of theory for typical drug molecules, inferring the complex potential energy surfaces as the main source of error. Furthermore, we show some application examples for the calculation of free energy differences in typical chemical reactions.
Collapse
Affiliation(s)
- Philipp Pracht
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn Beringstr. 4 53115 Bonn Germany +49-228-73-2351
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn Beringstr. 4 53115 Bonn Germany +49-228-73-2351
| |
Collapse
|