1
|
El-Sahili A, Sottile F, Reining L. Total Energy beyond GW: Exact Results and Guidelines for Approximations. J Chem Theory Comput 2024; 20:1972-1987. [PMID: 38324673 DOI: 10.1021/acs.jctc.3c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The total energy and electron addition and removal spectra can, in principle, be obtained exactly from the one-body Green's function (GF). In practice, the GF is obtained from an approximate self-energy. In the framework of many-body perturbation theory, we derive different expressions that are based on an approximate self-energy, but that yield nevertheless, in principle, the exact exchange-correlation contribution to the total energy for any interaction strength. Response functions play a crucial role, which explains why, for example, ingredients from time-dependent density functional theory can be used to build these approximate self-energies. We show that the key requirement for obtaining exact results is the consistent combination of ingredients. Also when further approximations are made, as it is necessary in practice, this consistency remains the key to obtain good results. All findings are illustrated using the exactly solvable symmetric Hubbard dimer.
Collapse
Affiliation(s)
- Abdallah El-Sahili
- LSI, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau F-91120, France
- European Theoretical Spectroscopy Facility (ETSF), https://www.etsf.eu/
| | - Francesco Sottile
- LSI, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau F-91120, France
- European Theoretical Spectroscopy Facility (ETSF), https://www.etsf.eu/
| | - Lucia Reining
- LSI, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau F-91120, France
- European Theoretical Spectroscopy Facility (ETSF), https://www.etsf.eu/
| |
Collapse
|
2
|
Canestraight A, Lei X, Ibrahim KZ, Vlček V. Efficient Quasiparticle Determination beyond the Diagonal Approximation via Random Compression. J Chem Theory Comput 2024; 20:551-557. [PMID: 38175913 DOI: 10.1021/acs.jctc.3c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Calculations of excited states in the Green's function formalism often invokes the diagonal approximation, in which the quasiparticle states are taken from a mean-field calculation. In this paper, we extend the stochastic approaches applied in the many-body perturbation theory and overcome this limitation for large systems in which we are interested in a small subset of states. We separate the problem into a core subspace whose coupling to the remainder of the system environment is stochastically sampled. This method is exemplified on computing hole injection energies into CO2 on an extended gold surface with nearly 3000 electrons. We find that in the extended system the size of the problem can be compressed up to 95% using stochastic sampling. This result provides a way forward for self-consistent stochastic methods and determination of Dyson orbitals in large systems.
Collapse
Affiliation(s)
- Annabelle Canestraight
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-9510, United States
| | - Xiaohe Lei
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Khaled Z Ibrahim
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Vojtěch Vlček
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
- Department of Materials, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
3
|
Besalú-Sala P, Bruneval F, Pérez-Jiménez ÁJ, Sancho-García JC, Rodríguez-Mayorga M. RPA, an Accurate and Fast Method for the Computation of Static Nonlinear Optical Properties. J Chem Theory Comput 2023; 19:6062-6069. [PMID: 37696751 PMCID: PMC10861135 DOI: 10.1021/acs.jctc.3c00674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 09/13/2023]
Abstract
The accurate computation of static nonlinear optical properties (SNLOPs) in large polymers requires accounting for electronic correlation effects with a reasonable computational cost. The Random Phase Approximation (RPA) used in the adiabatic connection fluctuation theorem is known to be a reliable and cost-effective method to render electronic correlation effects when combined with density-fitting techniques and integration over imaginary frequencies. We explore the ability of the RPA energy expression to predict SNLOPs by evaluating RPA electronic energies in the presence of finite electric fields to obtain (using the finite difference method) static polarizabilities and hyperpolarizabilities. We show that the RPA based on hybrid functional self-consistent field calculations yields accurate SNLOPs as the best-tuned double-hybrid functionals developed today, with the additional advantage that the RPA avoids any system-specific adjustment.
Collapse
Affiliation(s)
- Pau Besalú-Sala
- Department
of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for
Molecular and Life Sciences (AIMMS), Vrije
Universiteit Amsterdam, De Boelelaan 1083, HV Amsterdam 1081, The Netherlands
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, Girona 17003, Spain
| | - Fabien Bruneval
- Université
Paris-Saclay, CEA, Service de recherche en Corrosion et Comportement
des Matériaux, SRMP, Gif-sur-Yvette 91191, France
| | | | | | | |
Collapse
|
4
|
Bruneval F, Dattani N, van Setten MJ. The GW Miracle in Many-Body Perturbation Theory for the Ionization Potential of Molecules. Front Chem 2022; 9:749779. [PMID: 35004607 PMCID: PMC8733722 DOI: 10.3389/fchem.2021.749779] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022] Open
Abstract
We use the GW100 benchmark set to systematically judge the quality of several perturbation theories against high-level quantum chemistry methods. First of all, we revisit the reference CCSD(T) ionization potentials for this popular benchmark set and establish a revised set of CCSD(T) results. Then, for all of these 100 molecules, we calculate the HOMO energy within second and third-order perturbation theory (PT2 and PT3), and, GW as post-Hartree-Fock methods. We found GW to be the most accurate of these three approximations for the ionization potential, by far. Going beyond GW by adding more diagrams is a tedious and dangerous activity: We tried to complement GW with second-order exchange (SOX), with second-order screened exchange (SOSEX), with interacting electron-hole pairs (WTDHF), and with a GW density-matrix (γGW). Only the γGW result has a positive impact. Finally using an improved hybrid functional for the non-interacting Green’s function, considering it as a cheap way to approximate self-consistency, the accuracy of the simplest GW approximation improves even more. We conclude that GW is a miracle: Its subtle balance makes GW both accurate and fast.
Collapse
Affiliation(s)
- Fabien Bruneval
- CEA, Service de Recherches de Métallurgie Physique, Direction des Energies, Université Paris-Saclay, Paris, France
| | | | | |
Collapse
|
5
|
Rodríguez-Mayorga M, Mitxelena I, Bruneval F, Piris M. Coupling Natural Orbital Functional Theory and Many-Body Perturbation Theory by Using Nondynamically Correlated Canonical Orbitals. J Chem Theory Comput 2021; 17:7562-7574. [PMID: 34806362 DOI: 10.1021/acs.jctc.1c00858] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We develop a new family of electronic structure methods for capturing at the same time the dynamic and nondynamic correlation effects. We combine the natural orbital functional theory (NOFT) and many-body perturbation theory (MBPT) through a canonicalization procedure applied to the natural orbitals to gain access to any MBPT approximation. We study three different scenarios: corrections based on second-order Møller-Plesset (MP2), random-phase approximation (RPA), and coupled-cluster singles doubles (CCSD). Several chemical problems involving different types of electron correlation in singlet and multiplet spin states have been considered. Our numerical tests reveal that RPA-based and CCSD-based corrections provide similar relative errors in molecular dissociation energies (De) to the results obtained using a MP2 correction. With respect to the MP2 case, the CCSD-based correction improves the prediction, while the RPA-based correction reduces the computational cost.
Collapse
Affiliation(s)
- Mauricio Rodríguez-Mayorga
- Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique, 91191 Gif Sur Yvette, France.,Department of Theoretical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Ion Mitxelena
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Fabien Bruneval
- Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique, 91191 Gif Sur Yvette, France
| | - Mario Piris
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Euskadi, Spain
| |
Collapse
|
6
|
Wong ZC, Ungur L. Exploring vibronic coupling in the benzene radical cation and anion with different levels of the GW approximation. Phys Chem Chem Phys 2021; 23:19054-19070. [PMID: 34612443 DOI: 10.1039/d1cp02795f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The linear vibronic coupling constants of the benzene radical cation and anion have been obtained with different levels of the GW approximation, including G0W0, eigenvalue self-consistent GW, and quasiparticle self-consistent GW, as well as DFT with the following exchange-correlation functionals: BLYP, B3LYP, CAM-B3LYP, tuned CAM-B3LYP, and an IP-tuned CAM-B3LYP functional. The vibronic coupling constants were calculated numerically using the gradients of the eigenvalues of the degenerate HOMOs and LUMOs of the neutral benzene molecule for DFT, while the numerical gradients of the quasiparticle energies were used in the case of GW. The results were evaluated against those of high level wave function methods in the literature, and the approximate self-consistent GW methods and G0W0 with long-range corrected functionals were found to yield the best results on the whole.
Collapse
Affiliation(s)
- Zi Cheng Wong
- Department of Chemistry, National University of Singapore, Block S8 Level 3, 3 Science Drive 3, 117543, Singapore.
| | | |
Collapse
|