1
|
Qian R, Xue J, Xu Y, Huang J. Alchemical Transformations and Beyond: Recent Advances and Real-World Applications of Free Energy Calculations in Drug Discovery. J Chem Inf Model 2024; 64:7214-7237. [PMID: 39360948 DOI: 10.1021/acs.jcim.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Computational methods constitute efficient strategies for screening and optimizing potential drug molecules. A critical factor in this process is the binding affinity between candidate molecules and targets, quantified as binding free energy. Among various estimation methods, alchemical transformation methods stand out for their theoretical rigor. Despite challenges in force field accuracy and sampling efficiency, advancements in algorithms, software, and hardware have increased the application of free energy perturbation (FEP) calculations in the pharmaceutical industry. Here, we review the practical applications of FEP in drug discovery projects since 2018, covering both ligand-centric and residue-centric transformations. We show that relative binding free energy calculations have steadily achieved chemical accuracy in real-world applications. In addition, we discuss alternative physics-based simulation methods and the incorporation of deep learning into free energy calculations.
Collapse
Affiliation(s)
- Runtong Qian
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Xue
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - You Xu
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
2
|
Devereux M, Boittier ED, Meuwly M. Systematic improvement of empirical energy functions in the era of machine learning. J Comput Chem 2024; 45:1899-1913. [PMID: 38695412 DOI: 10.1002/jcc.27367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 07/05/2024]
Abstract
The impact of targeted replacement of individual terms in empirical force fields is quantitatively assessed for pure water, dichloromethane (CH 2 Cl 2 ), and solvated K + and Cl - ions. For the electrostatic interactions, point charges (PCs) and machine learning (ML)-based minimally distributed charges (MDCM) fitted to the molecular electrostatic potential are evaluated together with electrostatics based on the Coulomb integral. The impact of explicitly including second-order terms is investigated by adding a fragment molecular orbital (FMO)-derived polarization energy to an existing force field, in this case CHARMM. It is demonstrated that anisotropic electrostatics reduce the RMSE for water (by 1.4 kcal/mol), CH 2 Cl 2 (by 0.8 kcal/mol) and for solvated Cl - clusters (by 0.4 kcal/mol). An additional polarization term can be neglected for CH 2 Cl 2 but further improves the models for pure water (by ∼ 1.0 kcal/mol) and hydrated Cl - (by 0.4 kcal/mol), and is key for solvated K + , reducing the RMSE by 2.3 kcal/mol. A 12-6 Lennard-Jones functional form performs satisfactorily with PC and MDCM electrostatics, but is not appropriate for descriptions that account for the electrostatic penetration energy. The importance of many-body contributions is assessed by comparing a strictly 2-body approach with self-consistent reference data. Two-body interactions suffice for CH 2 Cl 2 whereas water and solvated K + and Cl - ions require explicit many-body corrections. Finally, a many-body-corrected dimer potential energy surface exceeds the accuracy attained using a conventional empirical force field, potentially reaching that of an FMO calculation. The present work systematically quantifies which terms improve the performance of an existing force field and what reference data to use for parametrizing these terms in a tractable fashion for ML fitting of pure and heterogeneous systems.
Collapse
Affiliation(s)
- Mike Devereux
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Eric D Boittier
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Wang L, Behara PK, Thompson MW, Gokey T, Wang Y, Wagner JR, Cole DJ, Gilson MK, Shirts MR, Mobley DL. The Open Force Field Initiative: Open Software and Open Science for Molecular Modeling. J Phys Chem B 2024; 128:7043-7067. [PMID: 38989715 DOI: 10.1021/acs.jpcb.4c01558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Force fields are a key component of physics-based molecular modeling, describing the energies and forces in a molecular system as a function of the positions of the atoms and molecules involved. Here, we provide a review and scientific status report on the work of the Open Force Field (OpenFF) Initiative, which focuses on the science, infrastructure and data required to build the next generation of biomolecular force fields. We introduce the OpenFF Initiative and the related OpenFF Consortium, describe its approach to force field development and software, and discuss accomplishments to date as well as future plans. OpenFF releases both software and data under open and permissive licensing agreements to enable rapid application, validation, extension, and modification of its force fields and software tools. We discuss lessons learned to date in this new approach to force field development. We also highlight ways that other force field researchers can get involved, as well as some recent successes of outside researchers taking advantage of OpenFF tools and data.
Collapse
Affiliation(s)
- Lily Wang
- Open Force Field, Open Molecular Software Foundation, Davis, California 95616, United States
| | - Pavan Kumar Behara
- Center for Neurotherapeutics, University of California, Irvine, California 92697, United States
| | - Matthew W Thompson
- Open Force Field, Open Molecular Software Foundation, Davis, California 95616, United States
| | - Trevor Gokey
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Yuanqing Wang
- Simons Center for Computational Physical Chemistry and Center for Data Science, New York, New York 10004, United States
| | - Jeffrey R Wagner
- Open Force Field, Open Molecular Software Foundation, Davis, California 95616, United States
| | - Daniel J Cole
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California at San Diego, La Jolla, California 92093, United States
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| | - David L Mobley
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
4
|
Bashir Y, Noor F, Ahmad S, Tariq MH, Qasim M, Tahir Ul Qamar M, Almatroudi A, Allemailem KS, Alrumaihi F, Alshehri FF. Integrated virtual screening and molecular dynamics simulation approaches revealed potential natural inhibitors for DNMT1 as therapeutic solution for triple negative breast cancer. J Biomol Struct Dyn 2024; 42:1099-1109. [PMID: 37021492 DOI: 10.1080/07391102.2023.2198017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
Triple negative breast cancers (TNBC) are clinically heterogeneous but mostly aggressive malignancies devoid of expression of the estrogen, progesterone, and HER2 (ERBB2 or NEU) receptors. It accounts for 15-20% of all cases. Altered epigenetic regulation including DNA hypermethylation by DNA methyltransferase 1 (DNMT1) has been implicated as one of the causes of TNBC tumorigenesis. The antitumor effect of DNMT1 has also been explored in TNBC that currently lacks targeted therapies. However, the actual treatment for TNBC is yet to be discovered. This study is attributed to the identification of novel drug targets against TNBC. A comprehensive docking and simulation analysis was performed to optimize promising new compounds by estimating their binding affinity to the target protein. Molecular dynamics simulation of 500 ns well complemented the binding affinity of the compound and revealed strong stability of predicted compounds at the docked site. Calculation of binding free energies using MMPBSA and MMGBSA validated the strong binding affinity between compound and binding pockets of DNMT1. In a nutshell, our study uncovered that Beta-Mangostin, Gancaonin Z, 5-hydroxysophoranone, Sophoraflavanone L, and Dorsmanin H showed maximum binding affinity with the active sites of DNMT1. Furthermore, all of these compounds depict maximum drug-like properties. Therefore, the proposed compounds can be a potential candidate for patients with TNBC, but, experimental validation is needed to ensure their safety.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yasir Bashir
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Fatima Noor
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | | | - Muhammad Qasim
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Tahir Ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faez Falah Alshehri
- College of Applied Medical Sciences, Shaqra University, Aldawadmi, Saudi Arabia
| |
Collapse
|
5
|
Aziz M, Sarfraz M, Khurrum Ibrahim M, Ejaz SA, Zehra T, Ogaly HA, Arafat M, Al-Zahrani FAM, Li C. Evaluation of anticancer potential of tetracene-5,12-dione (A01) and pyrimidine-2,4-dione (A02) via caspase 3 and lactate dehydrogenase cytotoxicity investigations. PLoS One 2023; 18:e0292455. [PMID: 38127898 PMCID: PMC10734984 DOI: 10.1371/journal.pone.0292455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/20/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer stands as a significant global cause of mortality, predominantly arising from the dysregulation of key enzymes and DNA. One strategic avenue in developing new anticancer agents involves targeting specific proteins within the cancer pathway. Amidst ongoing efforts to enhance the efficacy of anticancer drugs, a range of crucial medications currently interact with DNA at the molecular level, exerting profound biological effects. Our study is driven by the objective to comprehensively explore the potential of two compounds: (7S,9S)-7-[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione (A01) and 5-fluoro-1H-pyrimidine-2,4-dione (A02). These compounds have demonstrated marked efficacy against breast and cervical cancer cell lines, positioning them as promising anticancer candidates. In our investigation, A01 has emerged as a particularly potent candidate, with its potential bolstered by corroborative evidence from lactate dehydrogenase release and caspase-3 activity assays. On the other hand, A02 has exhibited remarkable anticancer potential. To further elucidate their molecular mechanisms and interactions, we employed computational techniques, including molecular docking and molecular dynamics simulations. Notably, our computational analyses suggest that the A01-DNA complex predominantly interacts via the minor groove, imparting significant insights into its mechanism of action. While earlier studies have also highlighted the anticancer activity of A01, our research contributes by providing a deeper understanding of its binding mechanisms through computational investigations. This knowledge holds potential for designing more effective drugs that target cancer-associated proteins. These findings lay a robust groundwork for future inquiries and propose that derivatives of A01 could be synthesized as potent bioactive agents for cancer treatment. By elucidating the distinctive aspects of our study's outcomes, we address the concern of distinguishing our findings from those of prior research.
Collapse
Affiliation(s)
- Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | | | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tasneem Zehra
- Department of Basic Science & Humanities, Dawood University of Engineering & Technology, Karachi, Pakistan
| | - Hanan A. Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | | | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| |
Collapse
|
6
|
Horton JT, Boothroyd S, Behara PK, Mobley DL, Cole DJ. A transferable double exponential potential for condensed phase simulations of small molecules. DIGITAL DISCOVERY 2023; 2:1178-1187. [PMID: 38013814 PMCID: PMC10408570 DOI: 10.1039/d3dd00070b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/07/2023] [Indexed: 11/29/2023]
Abstract
The Lennard-Jones potential is the most widely-used function for the description of non-bonded interactions in transferable force fields for the condensed phase. This is not because it has an optimal functional form, but rather it is a legacy resulting from when computational expense was a major consideration and this potential was particularly convenient numerically. At present, it persists because the effort that would be required to re-write molecular modelling software and train new force fields has, until now, been prohibitive. Here, we present Smirnoff-plugins as a flexible framework to extend the Open Force Field software stack to allow custom force field functional forms. We deploy Smirnoff-plugins with the automated Open Force Field infrastructure to train a transferable, small molecule force field based on the recently-proposed double exponential functional form, on over 1000 experimental condensed phase properties. Extensive testing of the resulting force field shows improvements in transfer free energies, with acceptable conformational energetics, run times and convergence properties compared to state-of-the-art Lennard-Jones based force fields.
Collapse
Affiliation(s)
- Joshua T Horton
- School of Natural and Environmental Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | | | - Pavan Kumar Behara
- Department of Pharmaceutical Sciences, University of California Irvine California 92697 USA
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California Irvine California 92697 USA
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Daniel J Cole
- School of Natural and Environmental Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
7
|
Ejaz SA, Aziz M, Wani TA, Al-Kahtani HM. Evaluation of mechanical features and antibacterial potential of fluoroquinolone against β-ketoacyl-ACP synthases (FabB, FabF & FabH) via computational approaches. Arch Biochem Biophys 2023:109674. [PMID: 37419193 DOI: 10.1016/j.abb.2023.109674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
Abstract
The synthesis of fatty acids, which are essential for the growth and survival of bacterial cells, is catalyzed by beta-keto acyl-ACP synthase I-III. Due to the significant differences between the bacterial ACP synthase enzyme and the mammalian enzyme, it may serve as a viable target for the development of potent anti-bacterial medications. In this study, a sophisticated molecular docking strategy was employed to target all three KAS enzymes. Initially, 1000 fluoroquinolone derivatives were obtained from PubChem database, along with the commonly used ciprofloxacin, and subjected to virtual screening against FabH, FabB, and FabF, respectively. Subsequently, molecular dynamics (MD) simulations were conducted to confirm the stability and reliability of the generated conformations. The compounds 155813629, 142486676, and 155567217 were found to exhibit potential molecular interactions against FabH, FabB, and FabF, respectively, with docking scores of -9.9, -8.9, and -9.9 kcal/mol. These scores outperformed the docking score of standard ciprofloxacin. Furthermore, MD simulations were used to assess the dynamic nature of molecular interactions in both physiological and dynamic settings. Throughout the simulated trajectory, all three complexes displayed favorable stability patterns. The findings of this investigation suggest that fluoroquinolone derivatives may serve as highly effective and selective inhibitors of the KAS enzyme.
Collapse
Affiliation(s)
- Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, the Islamia University of Bahawalpur, Saudi Arabia.
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, the Islamia University of Bahawalpur, Saudi Arabia
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Hammad M Al-Kahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
8
|
Zubair M, Khalil S, Rasul I, Nadeem H, Noor F, Ahmad S, Alrumaihi F, Allemailem KS, Almatroudi A, Alshehri FF, Alshehri ZS. Integrated molecular modeling and dynamics approaches revealed potential natural inhibitors of NF-κB transcription factor as breast cancer therapeutics. J Biomol Struct Dyn 2023; 41:14715-14729. [PMID: 37301608 DOI: 10.1080/07391102.2023.2214209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/08/2023] [Indexed: 06/12/2023]
Abstract
Breast cancer is a silent killer malady among women and a serious economic burden in health care management. A case of breast cancer is diagnosed among women every 19 s, and every 74 s, a woman dies of breast cancer somewhere in the world. Despite the pop-up of progressive research, advanced treatment approaches, and preventive measures, breast cancer remains amplifying ailment. The nuclear factor kappa B (NF-κB) is a key transcription factor that links inflammation with cancer and is demonstrated as being involved in the tumorigenesis of breast cancer. The NF-κB transcription factor family in mammals consists of five proteins; c-Rel, RelA(p65), RelB, NF-κB1(p50), and NF-κB2(p52). The antitumor effect of NF-κB has also been explored in breast cancer, however, the actual treatment for breast cancer is yet to be discovered. This study is attributed to the identification of novel drug targets against breast cancer by targeting c-Rel, RelA(p65), RelB, NF-κB1(p50), and NF-κB2(p52) proteins. To identify the putative active compounds, a structure-based 3D pharmacophore model to the protein active site cavity was generated followed by virtual screening, molecular docking, and molecular dynamics (MD) simulation. Initially, a library of 45000 compounds were docked against the target protein and five compounds namely Z56811101, Z653426226, Z1097341967, Z92743432, and Z464101066 were selected for further analysis. The relative binding affinity of Z56811101, Z653426226, Z1097341967, Z92743432, and Z464101066 with NF-κB1 (p50), NF-κB2 (p52), RelA (p65), RelB, and c-Rel proteins were -6.8, -8, -7.0, -6.9, and -7.2 kcal/mol, respectively which remained stable throughout the simulations of 200 ns. Furthermore, all of these compounds depict maximum drug-like properties. Therefore, the proposed compounds can be a potential candidate for patients with breast cancer, but, experimental validation is needed to ensure their safety.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sidra Khalil
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ijaz Rasul
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Habibullah Nadeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faez Falah Alshehri
- College of Applied Medical Sciences, Shaqra University, Aldawadmi, Saudi Arabia
| | - Zafer Saad Alshehri
- College of Applied Medical Sciences, Shaqra University, Aldawadmi, Saudi Arabia
| |
Collapse
|
9
|
Melse O, Antes I, Kaila VRI, Zacharias M. Benchmarking biomolecular force field-based Zn 2+ for mono- and bimetallic ligand binding sites. J Comput Chem 2023; 44:912-926. [PMID: 36495007 DOI: 10.1002/jcc.27052] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Zn2+ is one of the most versatile biologically available metal ions, but accurate modeling of Zn2+ -containing metalloproteins at the biomolecular force field level can be challenging. Since most Zn2+ models are parameterized in bulk solvent, in-depth knowledge about their performance in a protein environment is limited. Thus, we systematically investigate here the behavior of non-polarizable Zn2+ models for their ability to reproduce experimentally determined metal coordination and ligand binding in metalloproteins. The benchmarking is performed in challenging environments, including mono- (carbonic anhydrase II) and bimetallic (metallo-β-lactamase VIM-2) ligand binding sites. We identify key differences in the performance between the Zn2+ models with regard to the preferred ligating atoms (charged/non-charged), attraction of water molecules, and the preferred coordination geometry. Based on these results, we suggest suitable simulation conditions for varying Zn2+ site geometries that could guide the further development of biomolecular Zn2+ models.
Collapse
Affiliation(s)
- Okke Melse
- Center for Functional Protein Assemblies (CPA), Technical University of Munich, Garching, Germany.,SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | - Iris Antes
- Center for Functional Protein Assemblies (CPA), Technical University of Munich, Garching, Germany.,SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Zacharias
- Center for Functional Protein Assemblies (CPA), Technical University of Munich, Garching, Germany
| |
Collapse
|
10
|
Rehman A, Noor F, Fatima I, Qasim M, Liao M. Identification of molecular mechanisms underlying the therapeutic effects of Celosia Cristata on immunoglobulin nephropathy. Comput Biol Med 2022; 151:106290. [PMID: 36379189 DOI: 10.1016/j.compbiomed.2022.106290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/30/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Immunoglobulin A (IgA) nephropathy also known as Berger's disease, is a silent monster and perhaps the most prevalent glomerulonephritis that often accounts for end-stage kidney failure, thereby signifying a growing public health problem worldwide. The limited amount of available data and a broad spectrum of dysregulated physiological processes of IgAN make it a challenging task and a disproportionate economic load on the community health sector. Celosia cristata is an Amaranthaceous plant with attractive colorful inflorescences that are used in various regions of earth for the treatment of numerous ailments. A list of studies evidences the therapeutic efficacy of C. cristata against complicated disorders, but the precise molecular mechanism is yet to be discovered. This study is attributed to the identification of bioactive compounds, pathways, and target genes for the better treatment of IgAN. In the current analysis, compound-target genes-pathway networks were explored which uncovered that isorhamnetin, stigmasterol, luteolin, amaranthin, and β-sitosterol may serve as a magic bullet against IgAN by influencing the targets genes involved in the disease pathogenesis. Later, the expression of hub genes was then further analyzed using a microarray dataset (GSE93798). Through expression analysis, it is worth noting that FOS, JUN, and EGFR were considerably upregulated, and at the same moment, AKT1 was considerably downregulated in IgAN patients. Lastly, docking analysis further strengthened the current findings by validating the effective activity of the active ingredients against putative target genes. In summary, we propose that five key compounds including, isorhamnetin, stigmasterol, luteolin, amaranthin, and β-sitosterol, aid in the regulation of JUN, FOS, AKT1, and EGFR, which may serve as a promising and enthralling therapeutic option for IgAN. The overall integration of network pharmacology with molecular docking unveiled the multi-target pharmacological mechanisms of C. cristata against IgAN. This study provides convincing evidence that C. cristata might partially alleviate the IgAN and ultimately lays a foundation for further experimental research on the anti-IgAN activity of C. cristata.
Collapse
Affiliation(s)
- Abdur Rehman
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Israr Fatima
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Mingzhi Liao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
11
|
Mg2+ Ions Regulating 3WJ-PRNA to Construct Controllable RNA Nanoparticle Drug Delivery Platforms. Pharmaceutics 2022; 14:pharmaceutics14071413. [PMID: 35890308 PMCID: PMC9320661 DOI: 10.3390/pharmaceutics14071413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
RNA nanotechnology has shown great progress over the past decade. Diverse controllable and multifunctional RNA nanoparticles have been developed for various applications in many areas. For example, RNA nanoparticles can participate in the construction of drug delivery nanoplatforms. Recently, a three-way junction packaging RNA (3WJ-pRNA) has been exploited for its characteristics of self-assembly and ultrahigh stability in many aspects. 3WJ-pRNA is the 3WJ part of bacteriophage φ29 pRNA and joins different components of φ29 as a linker element. In this work, we used all-atom MD simulation to study the thermal stability of 3WJ-pRNA and the underlying mechanisms. While 3WJ-pRNA can remain in its original structure without Mg2+ ions at room temperature, only Mg-bound 3WJ-pRNA still maintains its initial three-way junction structure at a higher temperature (T = 400 K). The Mg-free 3WJ-pRNA undergoes dramatic deformation under high temperature condition. The contribution of Mg ions can be largely attributed to the protective effect of two Mg clamps on the hydrogen bond and base stacking interactions in helices. Taken together, our results reveal the extraordinary thermal stability of 3WJ-pRNA, which can be regulated by Mg2+ ions. Comprehensive depictions of thermal stability of pRNA and the regulation mechanism are helpful for the further development of controllable RNA nanoparticle drug delivery platforms.
Collapse
|
12
|
Fan K, Zhang Y, Qiu Y, Zhang H. Impacts of targeting different hydration free energy references on the development of ion potentials. Phys Chem Chem Phys 2022; 24:16244-16262. [PMID: 35758314 DOI: 10.1039/d2cp01237e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydration free energy (HFE) as the most important solvation parameter is often targeted in ion model development, even though the reported values differ by dozens of kcal mol-1 mainly due to the experimentally undetermined HFE of the proton ΔG°(H+). The choice of ΔG°(H+) obviously affects the hydration of single ions and the relative HFE between the ions with different (magnitude or sign) charges, and the impacts of targeted HFEs on the ion solvation and ion-ion interactions are largely unrevealed. Here we designed point charge models of K+, Mg2+, Al3+, and Cl- ions targeting a variety of HFE references and then investigated the HFE influences on the simulations of dilute and concentrated ion solutions and of the salt ion pairs in gas, liquid, and solid phases. Targeting one more property of ion-water oxygen distances (IOD) leaves the ion-water binding distance invariant, while the binding strength increases with the decreasing (more negative) HFE of ions as a result of a decrease in ΔG°(H+) for the cation and an increase in ΔG°(H+) for the anion. The increase in ΔG°(H+) leads to strengthened cation-anion interactions and thus to close ion-ion contacts, low osmotic pressures, and small activity derivatives in concentrated ion solutions as well as too stable ion pairs of the salts in different phases. The ion diffusivity and water exchange rates around the ions are simply not HFE dependent but rather more complex. Targeting both the aqueous IOD and salt crystal properties of KCl was also attempted and the comparison between different models indicates the complexity and challenge in obtaining a balanced performance between different phases using classical force fields. Our results also support that a real ΔG°(H+) value of -259.8 kcal mol-1 recommended by Hünenberger and Reif guides ion models to reproduce ion-water and ion-ion interactions reasonably at relatively low salt concentrations. Simulations of a metalloprotein show that a relatively more positive ΔG°(H+) for Mg2+ model is better for a reasonable description of the metal binding network.
Collapse
Affiliation(s)
- Kun Fan
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China.
| | - Yongguang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China.
| | - Yejie Qiu
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China.
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China.
| |
Collapse
|
13
|
Alamri MA, Mirza MU, Adeel MM, Ashfaq UA, Tahir ul Qamar M, Shahid F, Ahmad S, Alatawi EA, Albalawi GM, Allemailem KS, Almatroudi A. Structural Elucidation of Rift Valley Fever Virus L Protein towards the Discovery of Its Potential Inhibitors. Pharmaceuticals (Basel) 2022; 15:659. [PMID: 35745579 PMCID: PMC9228520 DOI: 10.3390/ph15060659] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/17/2022] Open
Abstract
Rift valley fever virus (RVFV) is the causative agent of a viral zoonosis that causes a significant clinical burden in domestic and wild ruminants. Major outbreaks of the virus occur in livestock, and contaminated animal products or arthropod vectors can transmit the virus to humans. The viral RNA-dependent RNA polymerase (RdRp; L protein) of the RVFV is responsible for viral replication and is thus an appealing drug target because no effective and specific vaccine against this virus is available. The current study reported the structural elucidation of the RVFV-L protein by in-depth homology modeling since no crystal structure is available yet. The inhibitory binding modes of known potent L protein inhibitors were analyzed. Based on the results, further molecular docking-based virtual screening of Selleckchem Nucleoside Analogue Library (156 compounds) was performed to find potential new inhibitors against the RVFV L protein. ADME (Absorption, Distribution, Metabolism, and Excretion) and toxicity analysis of these compounds was also performed. Besides, the binding mechanism and stability of identified compounds were confirmed by a 50 ns molecular dynamic (MD) simulation followed by MM/PBSA binding free energy calculations. Homology modeling determined a stable multi-domain structure of L protein. An analysis of known L protein inhibitors, including Monensin, Mycophenolic acid, and Ribavirin, provide insights into the binding mechanism and reveals key residues of the L protein binding pocket. The screening results revealed that the top three compounds, A-317491, Khasianine, and VER155008, exhibited a high affinity at the L protein binding pocket. ADME analysis revealed good pharmacodynamics and pharmacokinetic profiles of these compounds. Furthermore, MD simulation and binding free energy analysis endorsed the binding stability of potential compounds with L protein. In a nutshell, the present study determined potential compounds that may aid in the rational design of novel inhibitors of the RVFV L protein as anti-RVFV drugs.
Collapse
Affiliation(s)
- Mubarak A. Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia;
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada;
| | - Muhammad Muzammal Adeel
- 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.A.A.); (F.S.)
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.A.A.); (F.S.)
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (U.A.A.); (F.S.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Eid A. Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ghadah M. Albalawi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (G.M.A.); (A.A.)
- Department of Laboratory and Blood Bank, King Fahd Specialist Hospital, Tabuk 47717, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (G.M.A.); (A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (G.M.A.); (A.A.)
| |
Collapse
|
14
|
Qiu Y, Jiang Y, Zhang Y, Zhang H. Rational Design of Nonbonded Point Charge Models for Monovalent Ions with Lennard-Jones 12-6 Potential. J Phys Chem B 2021; 125:13502-13518. [PMID: 34860517 DOI: 10.1021/acs.jpcb.1c09103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ions are of central importance in nature, and a variety of potential models was proposed to model ions in different phases for an in-depth exploration of ion-related systems. Here, we developed point charge models of 14 monovalent ions with the traditional 12-6 Lennard-Jones (LJ) potential for use in conjunction with 11 water models of TIP3P, OPC3, SPC/E, SPC/Eb, TIP3P-FB, a99SB-disp, TIP4P-Ew, OPC, TIP4P/2005, TIP4P-D, and TIP4P-FB. The designed models reproduced the real hydration free energy (HFE) of ions and the ion-oxygen distance (IOD) in the first hydration shell accurately and simultaneously, a performance similar to the previously reported 12-6-4 LJ-type ion models (12-6 LJ plus an attractive C4 term for cations or a repulsive one for anions). This work, along with our previous work on di-, tri-, and tetravalent metal cations (J. Chem. Inf. Model. 2021, 61, 4031-4044; J. Chem. Inf. Model. 2021, 61, 4613-4629), demonstrates the feasibility of the simple 12-6 LJ potential in ion modeling. In order for the 12-6 LJ potential to reproduce both the HFE and IOD, the LJ R parameters need to be close to Shannon's ionic radii for the highly charged cations and to the Stokes's van der Waals (vdW) radii for the monovalent ions. With an additional C4 term, the R parameters of 12-6-4 LJ ion models agree well with the Stokes's vdW radii and have a more physical meaning. It appears that the C4 term can be merged into the 12-6 LJ potential by a rational tuning of R and the LJ well depth. Simulations of the osmotic coefficients of alkali chloride solutions and the properties of gaseous and solid alkali halides indicate the necessity of further optimizing ion-ion interactions via, for instance, targeting more properties or using a more physical (polarizable) model.
Collapse
Affiliation(s)
- Yejie Qiu
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yongguang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| |
Collapse
|
15
|
Zhang Y, Jiang Y, Qiu Y, Zhang H. Rational Design of Nonbonded Point Charge Models for Highly Charged Metal Cations with Lennard-Jones 12-6 Potential. J Chem Inf Model 2021; 61:4613-4629. [PMID: 34467756 DOI: 10.1021/acs.jcim.1c00723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we developed nonbonded point charge models using a simple Lennard-Jones (LJ) 12-6 potential for highly charged metal cations (18 trivalent and 6 tetravalent ions) for use with 11 water models of TIP3P, OPC3, SPC/E, SPC/Eb, TIP3P-FB, a99SB-disp, TIP4P-Ew, OPC, TIP4P/2005, TIP4P-D, and TIP4P-FB. The designed models simultaneously reproduce the hydration free energy (HFE) and ion-oxygen distance (IOD) in the first hydration shell with an error within 1 kcal/mol and 0.01 Å on average, respectively, and yield reasonable coordination numbers for most cations. Such performance is equivalent to the previously reported point charge models using a more complex 12-6-4 LJ-type potential, while the LJ R parameters of our models are much close to Shannon's revised effective ion radii than that of the 12-6-4 models. Our designed models overestimate the diffusion constants of several trivalent ions by 5-68%. The performance in predicting osmotic coefficients of trivalent chlorides in aqueous solution depends on the salt type. A calibration of cation-anion interacting LJ parameters reproduces the experimental osmotic coefficients of an AlCl3 solution at 0.2-3.0 mol/L. The effectiveness of our new models is further demonstrated by simulating a metalloprotein system with four force field/water combinations. This work facilitates accurate modeling of metal-containing systems by a variety of force fields and water models in aqueous solution.
Collapse
Affiliation(s)
- Yongguang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yejie Qiu
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| |
Collapse
|
16
|
Zhang Y, Jiang Y, Peng J, Zhang H. Rational Design of Nonbonded Point Charge Models for Divalent Metal Cations with Lennard-Jones 12-6 Potential. J Chem Inf Model 2021; 61:4031-4044. [PMID: 34313132 DOI: 10.1021/acs.jcim.1c00580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exploring a metal-involved biochemical process at a molecular level often requires a reliable description of metal properties in aqueous solution by classical nonbonded models. An additional C4 term for considering ion-induced dipole interactions was previously proposed to supplement the widely used Lennard-Jones 12-6 potential (known as the 12-6-4 LJ-type model) with good accuracy. Here, we demonstrate an alternative to modeling divalent metal cations (M2+) with the traditional 12-6 LJ potential by developing nonbonded point charge models for use with 11 water models: TIP3P, SPC/E, SPC/Eb, TIP4P-Ew, TIP4P-D, and TIP4P/2005 and the more recent OPC3, TIP3P-FB, OPC, TIP4P-FB, and a99SB-disp. Our designed models simultaneously reproduce the experimental hydration free energy, ion-oxygen distance, and coordination number in the first hydration shell accurately for most of the metal cations, an accuracy equivalent to that of the complex 12-6-4 LJ-type and double exponential potential models. A systematic comparison with the existing M2+ models is presented as well in terms of effective ion radii, diffusion constants, water exchange rates, and ion-water interactions. Molecular dynamics simulations of metal substitution in Escherichia coli glyoxalase I variants show the great potential of our new models for metalloproteins.
Collapse
Affiliation(s)
- Yongguang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park 16802, Pennsylvania, United States
| | - Jiarong Peng
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
17
|
Peng J, Zhang Y, Jiang Y, Zhang H. Developing and Assessing Nonbonded Dummy Models of Magnesium Ion with Different Hydration Free Energy References. J Chem Inf Model 2021; 61:2981-2997. [PMID: 34080414 DOI: 10.1021/acs.jcim.1c00281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A large diversity in the targeted hydration free energies (HFEs) during model parameterization of metal ions was reported in the literature with a difference by dozens of kcal/mol. Here, we developed a series of nonbonded dummy models of the Mg2+ ion targeting different HFE references in TIP3P water, followed by assessments of the designed models in the simulations of MgCl2 solution and biological systems. Together with the comparison of existing models, we conclude that the difference in the targeted HFEs has a limited influence on the model performance, while the usability of these models differs from case to case. The feasibility of reproducing more properties of Mg2+ such as diffusion constants and water exchange rates using a nonbonded dummy model is demonstrated. Underestimated activity derivative and osmotic coefficient of MgCl2 solutions in high concentration reveal a necessity for further optimization of ion-pair interactions. The developed dummy models are applicable to metal coordination with Asp, Glu, and His residues in metalloenzymes, and the performance in predicting monodentate or bidentate binding modes of Asp/Glu residues depends on the complexity of metal centers and the choice of protein force fields. When both the binding modes coexist, the nonbonded dummy models outperform point charge models, probably in need of considering polarization of metal-binding residues by, for instance, charge calibration in classical force fields. This work is valuable for the use and further development of magnesium ion models for simulations of metal-containing systems with good accuracy.
Collapse
Affiliation(s)
- Jiarong Peng
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Yongguang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| |
Collapse
|