1
|
Garner SM, Upadhyay S, Li X, Hammes-Schiffer S. Time-resolved vibronic spectra with nuclear-electronic orbital time-dependent configuration interaction. J Chem Phys 2025; 162:044108. [PMID: 39878421 DOI: 10.1063/5.0243394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/04/2025] [Indexed: 01/31/2025] Open
Abstract
Time-resolved spectroscopy is an important tool for probing photochemically induced nonequilibrium dynamics and energy transfer. Herein, a method is developed for the ab initio simulation of vibronic spectra and dynamical processes. This framework utilizes the recently developed nuclear-electronic orbital time-dependent configuration interaction (NEO-TDCI) approach, which treats all electrons and specified nuclei quantum mechanically on the same footing. A strategy is presented for calculating time-resolved vibrational and electronic absorption spectra from any initial condition. Although this strategy is general for any TDCI implementation, utilizing the NEO framework allows for the explicit inclusion of quantized nuclei, as illustrated through the calculation of vibrationally hot spectra. Time-resolved spectra produced by either vibrational or electronic Rabi oscillations capture ground-state absorption, stimulated emission, and excited-state absorption between vibronic states. This methodology provides the foundation for fully ab initio simulations of multidimensional spectroscopic experiments.
Collapse
Affiliation(s)
- Scott M Garner
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Shiv Upadhyay
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
2
|
Kurkowski L, Sissay A, Yang M, Meyer A, Lopata K. Simulations of Attosecond Metallization in Quartz and Diamond Probed with Inner-Shell Transient Absorption Spectroscopy. J Phys Chem A 2025; 129:650-660. [PMID: 39804606 PMCID: PMC11770749 DOI: 10.1021/acs.jpca.4c05137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
When dielectrics are hit with intense infrared (IR) laser pulses, transient metalization can occur. The initial attosecond dynamics behind this metallization are not entirely understood. Therefore, simulations are needed to understand this process and to help interpret experimental observations of it, such as with attosecond transient absorption (ATA). In this paper, we present first-principles simulations of ATA based on bulk-mimicking clusters and real-time time-dependent density functional theory (RT-TDDFT), with Koopmans-tuned range-separated hybrid functionals and Gaussian basis sets. Our method gives good agreement with the experiment for the breakdown threshold in silica and diamond. This breakdown voltage corresponds to a Keldysh parameter of approximately one and thus involves a transition to a regime where the dynamics are driven by tunneling. Pumping at an amplitude just below this value causes a mixture of multiphoton and tunneling excitations across the band gap to occur. The computed extreme ultraviolet and X-ray attosecond transient spectra also agree well with the experiment and show a decrease in optical density due to the transient population of the conduction band from the IR field. First-principles approaches such as this are valuable for interpreting the complicated modulations in a spectrum and for guiding future attosecond experiments on solids.
Collapse
Affiliation(s)
- Lucas Kurkowski
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Adonay Sissay
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Mengqi Yang
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexander Meyer
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kenneth Lopata
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Center
for Computation and Technology, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
3
|
Herbert JM, Zhu Y, Alam B, Ojha AK. Time-Dependent Density Functional Theory for X-ray Absorption Spectra: Comparing the Real-Time Approach to Linear Response. J Chem Theory Comput 2023; 19:6745-6760. [PMID: 37708349 DOI: 10.1021/acs.jctc.3c00673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
We simulate X-ray absorption spectra at elemental K-edges using time-dependent density functional theory (TDDFT) in both its conventional linear-response implementation and its explicitly time-dependent or "real-time" formulation. Real-time TDDFT simulations enable broadband spectra calculations without the need to invoke frozen occupied orbitals ("core/valence separation"), but we find that these spectra are often contaminated by transitions to the continuum that originate from lower-energy core and semicore orbitals. This problem becomes acute in triple-ζ basis sets, although it is sometimes sidestepped in double-ζ basis sets. Transitions to the continuum acquire surprisingly large dipole oscillator strengths, leading to spectra that are difficult to interpret. Meaningful spectra can be recovered by means of a filtering technique that decomposes the spectrum into contributions from individual occupied orbitals, and the same procedure can be used to separate L- and K-edge spectra arising from different elements within a given molecule. In contrast, conventional linear-response TDDFT requires core/valence separation but is free of these artifacts. It is also significantly more efficient than the real-time approach, even when hundreds of individual states are needed to reproduce near-edge absorption features and even when Padé approximants are used to reduce the real-time simulations to just 2-4 fs of time propagation. Despite the cost, the real-time approach may be useful to examine the validity of the core/valence separation approximation.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ying Zhu
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Chemical Physics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bushra Alam
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Avik Kumar Ojha
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Moitra T, Konecny L, Kadek M, Rubio A, Repisky M. Accurate Relativistic Real-Time Time-Dependent Density Functional Theory for Valence and Core Attosecond Transient Absorption Spectroscopy. J Phys Chem Lett 2023; 14:1714-1724. [PMID: 36757216 PMCID: PMC9940299 DOI: 10.1021/acs.jpclett.2c03599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
First principles theoretical modeling of out-of-equilibrium processes observed in attosecond pump-probe transient absorption spectroscopy (TAS) triggering pure electron dynamics remains a challenging task, especially for heavy elements and/or core excitations containing fingerprints of scalar and spin-orbit relativistic effects. To address this, we formulate a methodology for simulating TAS within the relativistic real-time, time-dependent density functional theory (RT-TDDFT) framework, for both the valence and core energy regimes. Especially for TAS, full four-component (4c) RT simulations are feasible but computationally demanding. Therefore, in addition to the 4c approach, we also introduce the atomic mean-field exact two-component (amfX2C) Hamiltonian accounting for one- and two-electron picture-change corrections within RT-TDDFT. amfX2C preserves the accuracy of the parent 4c method at a fraction of its computational cost. Finally, we apply the methodology to study valence and near-L2,3-edge TAS processes of experimentally relevant systems and provide additional physical insights using relativistic nonequilibrium response theory.
Collapse
Affiliation(s)
- Torsha Moitra
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Lukas Konecny
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Max
Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Marius Kadek
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Department
of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Algorithmiq
Ltd., Kanavakatu 3C, FI-00160 Helsinki, Finland
| | - Angel Rubio
- Max
Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics (CCQ), The Flatiron Institute, 162 Fifth Avenue, New York New York 10010, United States
- Nano-Bio
Spectroscopy Group, Departamento de Física de Materiales, Universidad del País Vasco, 20018 San Sebastian, Spain
| | - Michal Repisky
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, 84104 Bratislava, Slovakia
| |
Collapse
|
5
|
Ye L, Wang H, Zhang Y, Liu W. Self-Adaptive Real-Time Time-Dependent Density Functional Theory for X-ray Absorptions. J Chem Phys 2022; 157:074106. [DOI: 10.1063/5.0106250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Real-time time-dependent density functional theory (RT-TDDFT) can in principle access the whole absorption spectrum of a many-electron system exposed to a narrow pulse. However, this requires an accurate and efficient propagator for the numerical integration of the time-dependent Kohn-Sham equation. While a low-order time propagator is already sufficient for the low-lying valence absorption spectra, it is no longer the case for the X-ray absorption spectra (XAS) of systems composed even only of light elements, for which the use of a high-order propagator is indispensable. It is then crucial to choose a largest possible time step and a shortest possible simulation time, so as to minimize the computational cost. To this end, we propose here a robust AutoPST approach to determine automatically (Auto) the propagator (P), step (S), and time (T) for relativistic RT-TDDFT simulations of XAS.
Collapse
Affiliation(s)
| | - Hao Wang
- Shandong University - Qingdao Campus, China
| | | | - Wenjian Liu
- Qingdao Institue for Theoretical and Computational Sciences, Shandong University, China
| |
Collapse
|