1
|
Li G, Shi Z, Huang L, Wang L. Multiconfigurational Surface Hopping: a Time-Dependent Variational Approach with Momentum-Jump Trajectories. J Chem Theory Comput 2024. [PMID: 39215702 DOI: 10.1021/acs.jctc.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The Ehrenfest mean field dynamics and trajectory surface hopping have been widely used in nonadiabatic dynamics simulations. Based on the time-dependent variational principle (TDVP), the multiconfigurational Ehrenfest (MCE) method has also been developed and can be regarded as a multiconfigurational extension of the traditional Ehrenfest dynamics. However, it is not straightforward to apply the TDVP to surface hopping trajectories because there exists momentum jump during surface hops. To solve this problem, we here propose a multiconfigurational surface hopping (MCSH) method, where continuous momenta are obtained by linear interpolation and the interpolated trajectories are used to construct the basis functions for TDVP in a postprocessing manner. As demonstrated in a series of representative spin-boson models, MCSH achieves high accuracy with only several hundred trajectory bases and can uniformly improve the performance of surface hopping. In principle, MCSH can be combined with all kinds of mixed quantum-classical trajectories and thus has the potential to properly describe general nonadiabatic dynamics.
Collapse
Affiliation(s)
- Guijie Li
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Lei Huang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Joy C, Mandal B, Bostan D, Dubernet ML, Babikov D. Mixed quantum/classical theory (MQCT) approach to the dynamics of molecule-molecule collisions in complex systems. Faraday Discuss 2024; 251:225-248. [PMID: 38770664 DOI: 10.1039/d3fd00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We developed a general theoretical approach and a user-ready computer code that permit study of the dynamics of collisional energy transfer and ro-vibrational energy exchange in complex molecule-molecule collisions. The method is a mixture of classical and quantum mechanics. The internal ro-vibrational motion of collision partners is treated quantum mechanically using a time-dependent Schrödinger equation that captures many quantum phenomena including state quantization and zero-point energy, propensity and selection rules for state-to-state transitions, quantum symmetry and interference phenomena. A significant numerical speed up is obtained by describing the translational motion of collision partners classically, using the Ehrenfest mean-field trajectory approach. Within this framework a family of approximate methods for collision dynamics is developed. Several benchmark studies for diatomic and triatomic molecules, such as H2O and ND3 collided with He, H2 and D2, show that the results of MQCT are in good agreement with full-quantum calculations in a broad range of energies, especially at high collision energies where they become nearly identical to the full quantum results. Numerical efficiency of the method and massive parallelism of the MQCT code permit us to embrace some of the most complicated collisional systems ever studied, such as C6H6 + He, CH3COOH + He and H2O + H2O. Application of MQCT to the collisions of chiral molecules such as CH3CHCH2O + He, and to molecule-surface collisions is also possible and will be pursued in the future.
Collapse
Affiliation(s)
- Carolin Joy
- Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| | - Bikramaditya Mandal
- Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| | - Dulat Bostan
- Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| | - Marie-Lise Dubernet
- Observatoire de Paris, PSL University, Sorbonne Universite, CNRS, SYRTE, Paris, France
| | - Dmitri Babikov
- Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
| |
Collapse
|
3
|
Perez-Castillo R, Freixas VM, Mukamel S, Martinez-Mesa A, Uranga-Piña L, Tretiak S, Gelin MF, Fernandez-Alberti S. Transient-absorption spectroscopy of dendrimers via nonadiabatic excited-state dynamics simulations. Chem Sci 2024; 15:13250-13261. [PMID: 39183915 PMCID: PMC11339953 DOI: 10.1039/d4sc01019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
The efficiency of light-harvesting and energy transfer in multi-chromophore ensembles underpins natural photosynthesis. Dendrimers are highly branched synthetic multi-chromophoric conjugated supra-molecules that mimic these natural processes. After photoexcitation, their repeated units participate in a number of intramolecular electronic energy relaxation and redistribution pathways that ultimately funnel to a sink. Here, a model four-branched dendrimer with a pyrene core is theoretically studied using nonadiabatic molecular dynamics simulations. We evaluate excited-state photoinduced dynamics of the dendrimer, and demonstrate on-the-fly simulations of its transient absorption pump-probe (TA-PP) spectra. We show how the evolutions of the simulated TA-PP spectra monitor in real time photoinduced energy relaxation and redistribution, and provide a detailed microscopic picture of the relevant energy-transfer pathways. To the best of our knowledge, this is the first of this kind of on-the-fly atomistic simulation of TA-PP signals reported for a large molecular system.
Collapse
Affiliation(s)
- Royle Perez-Castillo
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Victor M Freixas
- Department of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| | - Shaul Mukamel
- Department of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| | - Aliezer Martinez-Mesa
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
- DynAMoS (Dynamical Processes in Atomic and Molecular Systems), Facultad de Física, Universidad de La Habana San Lázaro y L La Habana 10400 Cuba
| | - Llinersy Uranga-Piña
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
- DynAMoS (Dynamical Processes in Atomic and Molecular Systems), Facultad de Física, Universidad de La Habana San Lázaro y L La Habana 10400 Cuba
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University Hangzhou 310018 China
| | | |
Collapse
|
4
|
Brook R, Symonds C, Shalashilin DV. Full wave function cloning for improving convergence of the multiconfigurational Ehrenfest method: Tests in the zero-temperature spin-boson model regime. J Chem Phys 2024; 161:064102. [PMID: 39120032 DOI: 10.1063/5.0221184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
In this paper, we report a new algorithm for creating an adaptive basis set in the Multiconfigurational Ehrenfest (MCE) method, which is termed Full Cloning (FC), and test it together with the existing Multiple Cloning (MC) using the spin-boson model at zero-temperature as a benchmark. The zero-temperature spin-boson regime is a common hurdle in the development of methods that seek to model quantum dynamics. Two versions of MCE exist. We demonstrate that MC is vital for the convergence of MCE version 2 (MCEv2). The first version (MCEv1) converges much better than MCEv2, but FC improves its convergence in a few cases where it is hard to converge it with the help of a reasonably small size of the basis set.
Collapse
Affiliation(s)
- Ryan Brook
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | |
Collapse
|
5
|
Cao Y, Halls MD, Friesner RA. Highly efficient implementation of analytic nonadiabatic derivative couplings within the pseudospectral method. J Chem Phys 2024; 160:084106. [PMID: 38385510 DOI: 10.1063/5.0188277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
A pseudospectral implementation of nonadiabatic derivative couplings in the Tamm-Dancoff approximation is reported, and the accuracy and efficiency of the pseudospectral nonadiabatic derivative couplings are studied. Our results demonstrate that the pseudospectral method provides mean absolute errors of 0.2%-1.9%, while providing a significant speedup. Benchmark calculations on fullerenes (Cn, n up to 100) using B3LYP achieved 10- to 15-fold, 8- to 17-fold, and 43- to 75-fold speedups for 6-31G**, 6-31++G**, and cc-pVTZ basis sets, respectively, when compared to the conventional spectral method.
Collapse
Affiliation(s)
- Yixiang Cao
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036, USA
| | - Mathew D Halls
- Schrödinger Inc., 9868 Scranton, Suite 3200, San Diego, California 92121, USA
| | - Richard A Friesner
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
6
|
Weight BM, Li X, Zhang Y. Theory and modeling of light-matter interactions in chemistry: current and future. Phys Chem Chem Phys 2023; 25:31554-31577. [PMID: 37842818 DOI: 10.1039/d3cp01415k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Light-matter interaction not only plays an instrumental role in characterizing materials' properties via various spectroscopic techniques but also provides a general strategy to manipulate material properties via the design of novel nanostructures. This perspective summarizes recent theoretical advances in modeling light-matter interactions in chemistry, mainly focusing on plasmon and polariton chemistry. The former utilizes the highly localized photon, plasmonic hot electrons, and local heat to drive chemical reactions. In contrast, polariton chemistry modifies the potential energy curvatures of bare electronic systems, and hence their chemistry, via forming light-matter hybrid states, so-called polaritons. The perspective starts with the basic background of light-matter interactions, molecular quantum electrodynamics theory, and the challenges of modeling light-matter interactions in chemistry. Then, the recent advances in modeling plasmon and polariton chemistry are described, and future directions toward multiscale simulations of light-matter interaction-mediated chemistry are discussed.
Collapse
Affiliation(s)
- Braden M Weight
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Xinyang Li
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
7
|
Freixas VM, Oldani N, Tretiak S, Fernandez-Alberti S. Twisting Aromaticity and Photoinduced Dynamics in Hexapole Helicenes. J Phys Chem Lett 2023; 14:10145-10150. [PMID: 37924328 DOI: 10.1021/acs.jpclett.3c02628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Curved aromatic molecules are attractive electronic materials, where an additional internal strain uniquely modifies their structure, aromaticity, dynamics, and optical properties. Helicenes are examples of such twisted conjugated systems. Herein, we analyze the photoinduced dynamics in different stereoisomers of a hexapole helicene by using nonadiabatic excited-state molecular dynamics simulations. We explore how changes in symmetry and structural distortion modulate the intramolecular energy redistribution. We find that distinct helical assembly leads to different rigid distorted structures that in turn impact the nonradiative energy relaxation and ultimately formation of the self-trapped exciton. Subsequently, the value of the twisting angles relative to the central triphenylene core structure controls the global molecular aromaticity and electronic localization during the internal conversion process. Our work sheds light on how the future synthesis of novel curved aromatic compounds can be directed to attain specific desired electronic properties through the modulation of their twisted aromaticity.
Collapse
Affiliation(s)
- Victor M Freixas
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Nicolas Oldani
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | |
Collapse
|
8
|
Mejia-Rodriguez D, Aprà E, Autschbach J, Bauman NP, Bylaska EJ, Govind N, Hammond JR, Kowalski K, Kunitsa A, Panyala A, Peng B, Rehr JJ, Song H, Tretiak S, Valiev M, Vila FD. NWChem: Recent and Ongoing Developments. J Chem Theory Comput 2023; 19:7077-7096. [PMID: 37458314 DOI: 10.1021/acs.jctc.3c00421] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This paper summarizes developments in the NWChem computational chemistry suite since the last major release (NWChem 7.0.0). Specifically, we focus on functionality, along with input blocks, that is accessible in the current stable release (NWChem 7.2.0) and in the "master" development branch, interfaces to quantum computing simulators, interfaces to external libraries, the NWChem github repository, and containerization of NWChem executable images. Some ongoing developments that will be available in the near future are also discussed.
Collapse
Affiliation(s)
- Daniel Mejia-Rodriguez
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Edoardo Aprà
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Nicholas P Bauman
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Eric J Bylaska
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Niranjan Govind
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jeff R Hammond
- Accelerated Computing, NVIDIA Helsinki Oy, Porkkalankatu 1, 00180 Helsinki, Finland
| | - Karol Kowalski
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alexander Kunitsa
- Zapata Computing, Inc., 100 Federal Street, Boston, Massachusetts 02110, United States
| | - Ajay Panyala
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bo Peng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - John J Rehr
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Marat Valiev
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
9
|
Freixas VM, Malone W, Li X, Song H, Negrin-Yuvero H, Pérez-Castillo R, White A, Gibson TR, Makhov DV, Shalashilin DV, Zhang Y, Fedik N, Kulichenko M, Messerly R, Mohanam LN, Sharifzadeh S, Bastida A, Mukamel S, Fernandez-Alberti S, Tretiak S. NEXMD v2.0 Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations. J Chem Theory Comput 2023; 19:5356-5368. [PMID: 37506288 DOI: 10.1021/acs.jctc.3c00583] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
We present NEXMD version 2.0, the second release of the NEXMD (Nonadiabatic EXcited-state Molecular Dynamics) software package. Across a variety of new features, NEXMD v2.0 incorporates new implementations of two hybrid quantum-classical dynamics methods, namely, Ehrenfest dynamics (EHR) and the Ab-Initio Multiple Cloning sampling technique for Multiconfigurational Ehrenfest quantum dynamics (MCE-AIMC or simply AIMC), which are alternative options to the previously implemented trajectory surface hopping (TSH) method. To illustrate these methodologies, we outline a direct comparison of these three hybrid quantum-classical dynamics methods as implemented in the same NEXMD framework, discussing their weaknesses and strengths, using the modeled photodynamics of a polyphenylene ethylene dendrimer building block as a representative example. We also describe the expanded normal-mode analysis and constraints for both the ground and excited states, newly implemented in the NEXMD v2.0 framework, which allow for a deeper analysis of the main vibrational motions involved in vibronic dynamics. Overall, NEXMD v2.0 expands the range of applications of NEXMD to a larger variety of multichromophore organic molecules and photophysical processes involving quantum coherences and persistent couplings between electronic excited states and nuclear velocity.
Collapse
Affiliation(s)
- Victor M Freixas
- Departments of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Walter Malone
- Department of Physics, Tuskegee University, Tuskegee, Alabama 36088, United States
| | - Xinyang Li
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Huajing Song
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hassiel Negrin-Yuvero
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Royle Pérez-Castillo
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Alexander White
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tammie R Gibson
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dmitry V Makhov
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | | | - Yu Zhang
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nikita Fedik
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Maksim Kulichenko
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Richard Messerly
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Luke Nambi Mohanam
- Department of Electrical and Computer Engineering, College of Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Sahar Sharifzadeh
- Department of Electrical and Computer Engineering, College of Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Adolfo Bastida
- Departamento de Química Física, Universidad de Murcia, Murcia 30100, Spain
| | - Shaul Mukamel
- Departments of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | | | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
10
|
Bonilla V, Freixas VM, Fernandez-Alberti S, Galindo JF. Impact of the core on the inter-branch exciton exchange in dendrimers. Phys Chem Chem Phys 2023; 25:12097-12106. [PMID: 37133823 DOI: 10.1039/d2cp06009d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Organic dendrimers with π conjugated systems are capable of capturing solar energy as a renewable source for human use. Nonetheless, further study regarding the relationship between the structure and the energy transfer mechanism in these types of molecules is still necessary. In this work, nonadiabatic excited state molecular dynamics (NEXMD) were carried out to study the intra- and inter-branch exciton migration in two tetra-branched dendrimers, C(dSSB)4 and Ad(BuSSB)4, which differ in their respective carbon and adamantane core. Both systems undergo a ladder decay mechanism between excited states, with back-and-forth transitions between S1 and S2. Despite presenting very similar absorption-emission spectra, differences in the photoinduced energy relaxation are observed. The size of the core impacts the inter-branch energy exchange and transient exciton localization/delocalization, which ultimately condition the relative energy relaxation rates, being faster in Ad(BuSSB)4 with respect to C(dSSB)4. Nevertheless, the photoinduced processes lead to a progressive final exciton-self-trapping in one of the branches of both dendrimers, which is a desirable feature in organic photovoltaic applications. Our results can inspire the design of more efficient dendrimers with the desired magnitude of inter-branch exciton exchange and localization/delocalization according to changes in their core.
Collapse
Affiliation(s)
- Valeria Bonilla
- Departamento de Química, Universidad Nacional de Colombia, Sede Bogotá, 111321, Bogotá, Colombia.
| | - Victor M Freixas
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | | | - Johan Fabian Galindo
- Departamento de Química, Universidad Nacional de Colombia, Sede Bogotá, 111321, Bogotá, Colombia.
| |
Collapse
|
11
|
Nam Y, Song H, Freixas VM, Keefer D, Fernandez-Alberti S, Lee JY, Garavelli M, Tretiak S, Mukamel S. Monitoring vibronic coherences and molecular aromaticity in photoexcited cyclooctatetraene with an X-ray probe: a simulation study. Chem Sci 2023; 14:2971-2982. [PMID: 36937575 PMCID: PMC10016608 DOI: 10.1039/d2sc04335a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding conical intersection (CI) dynamics and subsequent conformational changes is key for exploring and controlling photo-reactions in aromatic molecules. Monitoring of their time-resolved dynamics remains a formidable experimental challenge. In this study, we simulate the photoinduced S3 to S1 non-adiabatic dynamics of cyclooctatetraene (COT), involving multiple CIs with relaxation times in good agreement with experiment. We further investigate the possibility to directly probe the CI passages in COT by off-resonant X-ray Raman spectroscopy (TRUECARS) and time-resolved X-ray diffraction (TRXD). We find that these signals sensitively monitor key chemical features during the ultrafast dynamics. First, we distinguish two CIs by using TRUECARS signals with their appearances at different Raman shifts. Second, we demonstrate that TRXD, where X-ray photons scatter off electron densities, can resolve ultrafast changes in the aromaticity of COT. It can further distinguish between planar and non-planar geometries explored during the dynamics, as e.g. two different tetraradical-type CIs. The knowledge gained from these measurements can give unique insight into fundamental chemical properties that dynamically change during non-adiabatic passages.
Collapse
Affiliation(s)
- Yeonsig Nam
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Daniel Keefer
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | | | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University Suwon 16419 Korea
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari,", Universita' degli Studi di Bologna I-40136 Bologna Italy
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Shaul Mukamel
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| |
Collapse
|
12
|
Chakraborty P, Liu Y, McClung S, Weinacht T, Matsika S. Nonadiabatic Excited State Dynamics of Organic Chromophores: Take-Home Messages. J Phys Chem A 2022; 126:6021-6031. [PMID: 36069531 DOI: 10.1021/acs.jpca.2c04671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonadiabatic excited state dynamics are important in a variety of processes. Theoretical and experimental developments have allowed for a great progress in this area, while combining the two is often necessary and the best approach to obtain insight into the photophysical behavior of molecules. In this Feature Article we use examples of our recent work combining time-resolved photoelectron spectroscopy with theoretical nonadiabatic dynamics to highlight important lessons we learned. We compare the nonadiabatic excited state dynamics of three different organic molecules with the aim of elucidating connections between structure and dynamics. Calculations and measurements are compared for uracil, 1,3-cyclooctadiene, and 1,3-cyclohexadiene. The comparison highlights the role of rigidity in influencing the dynamics and the difficulty of capturing the dynamics accurately with calculations.
Collapse
Affiliation(s)
- Pratip Chakraborty
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States.,Division of Theoretical Chemistry and Biology, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Yusong Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States.,Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, United States
| | - Samuel McClung
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
13
|
Wu X, Wen S, Song H, Frauenheim T, Tretiak S, Yam C, Zhang Y. Nonadiabatic Molecular Dynamics Simulations Based on Time-Dependent Density Functional Tight-Binding Method. J Chem Phys 2022; 157:084114. [DOI: 10.1063/5.0100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonadiabatic excited-state molecular dynamics underpin many photophysical and photochemical phenomena, such as exciton dynamics, charge separation and transport. In this work, we present an efficient nonadiabatic molecular dynamic (NAMD) simulation method based on time-dependent density functional tight-binding (TDDFTB) theory. Specifically, the adiabatic electronic structure, an essential NAMD input, is described at the TDDFTB level. The nonadiabatic effects originating from the coupled motions of electrons and nuclei are treated by the trajectory surface hopping algorithm. To improve the computational efficiency, nonadiabatic couplings between excited states within the TDDFTB method are derived and implemented using an analytical approach. Further, the time-dependent nonadiabatic coupling scalars are calculated based on the overlap between molecular orbitals rather than the Slater determinants to speed up the simulations. In addition, the electronic decoherence scheme and a state reassigned unavoided crossings algorithm, which has been implemented in the NEXMD software, are used to improve the accuracy of the simulated dynamics and handle trivial unavoided crossings. Finally, the photoinduced nonadiabatic dynamics of a benzene molecule are simulated to demonstrate our implementation. The results for excited state NAMD simulations of benzene molecule based on TDDFTB method compare well that obtained with numerically expensive time-dependent density functional theory. The proposed methodology provides an attractive theoretical simulation tool for predicting the photophysical and photochemical properties of complex materials.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen JL Computational Science and Applied Research Institute, China
| | | | - Huajing Song
- Los Alamos National Laboratory, United States of America
| | | | - Sergei Tretiak
- Theoretical Division, T-1, Los Alamos National Laboratory, United States of America
| | - ChiYung Yam
- Beijing Computational Science Research Center, Beijing Computational Science Research Center, China
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, United States of America
| |
Collapse
|
14
|
Freixas VM, Keefer D, Tretiak S, Fernandez-Alberti S, Mukamel S. Ultrafast coherent photoexcited dynamics in a trimeric dendrimer probed by X-ray stimulated-Raman signals. Chem Sci 2022; 13:6373-6384. [PMID: 35733898 PMCID: PMC9159119 DOI: 10.1039/d2sc00601d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
The photoinduced ultrafast coherent inter-chromophore energy redistribution in a triarylamine trimer is explored using nonadiabatic excited state molecular dynamics followed by simulations of X-ray Raman signals. The nitrogencentered system ensures strong interchromophore interactions and, thus, the presence of coherences. Nevertheless, the multitude of non-deterministic photoinduced pathways during the ultrafast inter-branch migration of the excitation results in random confinement on some branches and, therefore, spatial exciton scrambling and loss of phase information at long times. We show that the vibronic coherence dynamics evolving into the incoherent scrambling mechanism on ultrafast 50 fs timescale, is accurately probed by the TRUECARS X-ray stimulated Raman signal. In combination with previous results, where the technique has revealed long-lived coherences in a rigid heterodimer, the signal is most valuable for detecting ultrafast molecular coherences or their absence. We demonstrate that X-ray Raman spectroscopy is a useful tool in the chemical design of functional molecular building blocks. The photoinduced ultrafast coherent inter-chromophore energy redistribution in a triarylamine trimer is explored using nonadiabatic excited state molecular dynamics followed by simulations of X-ray Raman signals.![]()
Collapse
Affiliation(s)
- Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Daniel Keefer
- Department of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | | | - Shaul Mukamel
- Department of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| |
Collapse
|
15
|
Negrin-Yuvero H, Mukazhanova A, Freixas VM, Tretiak S, Sharifzadeh S, Fernandez-Alberti S. Vibronic Photoexcitation Dynamics of Perylene Diimide: Computational Insights. J Phys Chem A 2022; 126:733-741. [PMID: 35084863 DOI: 10.1021/acs.jpca.1c09484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Perylene diimide (PDI) represents a prototype material for organic optoelectronic devices because of its strong optical absorbance, chemical stability, efficient energy transfer, and optical and chemical tunability. Herein, we analyze in detail the vibronic relaxation of its photoexcitation using nonadiabatic excited-state molecular dynamics simulations. We find that after the absorption of a photon, which excites the electron to the second excited state, S2, induced vibronic dynamics features persistent modulations in the spatial localization of electronic and vibrational excitations. These energy exchanges are dictated by strong vibronic couplings that overcome structural disorders and thermal fluctuations. Specifically, the electronic wavefunction periodically swaps between localizations on the right and left sides of the molecule. Within 1 ps of such dynamics, a nonradiative transition to the lowest electronic state, S1, takes place, resulting in a complete delocalization of the wavefunction. The observed vibronic dynamics emerges following the electronic energy deposition in the direction that excites a combination of two dominant vibrational normal modes. This behavior is maintained even with a chemical substitution that breaks the symmetry of the molecule. We believe that our findings elucidate the nature of the complex dynamics of the optically excited states and, therefore, contribute to the development of tunable functionalities of PDIs and their derivatives.
Collapse
Affiliation(s)
- Hassiel Negrin-Yuvero
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina
| | - Aliya Mukazhanova
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sahar Sharifzadeh
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States.,Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | | |
Collapse
|
16
|
Di Terlizzi L, Roncari F, Crespi S, Protti S, Fagnoni M. Aryl-Cl vs heteroatom-Si bond cleavage on the route to the photochemical generation of σ,π-heterodiradicals. Photochem Photobiol Sci 2021; 21:667-685. [PMID: 34775550 DOI: 10.1007/s43630-021-00119-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022]
Abstract
The photochemistry of aryl chlorides having a X-SiMe3 group (X = O, NR, S, SiMe2) tethered to the aromatic ring has been investigated in detail, with the aim to generate valuable ϭ,π-heterodiradicals. Two competitive pathways arising from the excited triplet state of the aromatics have been observed, namely heterolysis of the aryl-chlorine bond and homolysis of the X-silicon bond. The former path is found in chlorinated phenols and anilines, whereas the latter is exclusive in the case of silylated thiophenols and aryl silanes. A combined experimental/computational approach was pursued to explain such a photochemical behavior.Graphical abstract.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- Department of Chemistry, PhotoGreen Lab, Viale Taramelli 12, 27100, Pavia, Italy
| | - Francesca Roncari
- Department of Chemistry, PhotoGreen Lab, Viale Taramelli 12, 27100, Pavia, Italy
| | - Stefano Crespi
- Stratingh Institute for Chemistry, Center for Systems Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Stefano Protti
- Department of Chemistry, PhotoGreen Lab, Viale Taramelli 12, 27100, Pavia, Italy
| | - Maurizio Fagnoni
- Department of Chemistry, PhotoGreen Lab, Viale Taramelli 12, 27100, Pavia, Italy.
| |
Collapse
|