1
|
Müller C, Steiner M, Unsleber JP, Weymuth T, Bensberg M, Csizi KS, Mörchen M, Türtscher PL, Reiher M. Heron: Visualizing and Controlling Chemical Reaction Explorations and Networks. J Phys Chem A 2024; 128:9028-9044. [PMID: 39360814 PMCID: PMC11492315 DOI: 10.1021/acs.jpca.4c03936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 10/18/2024]
Abstract
Automated and high-throughput quantum chemical investigations into chemical processes have become feasible in great detail and broad scope. This results in an increase in complexity of the tasks and in the amount of generated data. An efficient and intuitive way for an operator to interact with these data and to steer virtual experiments is required. Here, we introduce Heron, a graphical user interface that allows for advanced human-machine interactions with quantum chemical exploration campaigns into molecular structure and reactivity. Heron offers access to interactive and automated explorations of chemical reactions with standard electronic structure modules, haptic force feedback, microkinetic modeling, and refinement of data by automated correlated calculations including black-box complete active space calculations. It is tailored to the exploration and analysis of vast chemical reaction networks. We show how interoperable modules enable advanced workflows and pave the way for routine low-entrance-barrier access to advanced modeling techniques.
Collapse
Affiliation(s)
| | | | | | - Thomas Weymuth
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Moritz Bensberg
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Katja-Sophia Csizi
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Maximilian Mörchen
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Paul L. Türtscher
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
2
|
Csizi KS, Steiner M, Reiher M. Nanoscale chemical reaction exploration with a quantum magnifying glass. Nat Commun 2024; 15:5320. [PMID: 38909029 PMCID: PMC11193806 DOI: 10.1038/s41467-024-49594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/04/2024] [Indexed: 06/24/2024] Open
Abstract
Nanoscopic systems exhibit diverse molecular substructures by which they facilitate specific functions. Theoretical models of them, which aim at describing, understanding, and predicting these capabilities, are difficult to build. Viable quantum-classical hybrid models come with specific challenges regarding atomistic structure construction and quantum region selection. Moreover, if their dynamics are mapped onto a state-to-state mechanism such as a chemical reaction network, its exhaustive exploration will be impossible due to the combinatorial explosion of the reaction space. Here, we introduce a "quantum magnifying glass" that allows one to interactively manipulate nanoscale structures at the quantum level. The quantum magnifying glass seamlessly combines autonomous model parametrization, ultra-fast quantum mechanical calculations, and automated reaction exploration. It represents an approach to investigate complex reaction sequences in a physically consistent manner with unprecedented effortlessness in real time. We demonstrate these features for reactions in bio-macromolecules and metal-organic frameworks, diverse systems that highlight general applicability.
Collapse
Affiliation(s)
- Katja-Sophia Csizi
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Miguel Steiner
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
- ETH Zurich, NCCR Catalysis, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Markus Reiher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
- ETH Zurich, NCCR Catalysis, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
3
|
Weymuth T, Unsleber JP, Türtscher PL, Steiner M, Sobez JG, Müller CH, Mörchen M, Klasovita V, Grimmel SA, Eckhoff M, Csizi KS, Bosia F, Bensberg M, Reiher M. SCINE-Software for chemical interaction networks. J Chem Phys 2024; 160:222501. [PMID: 38857173 DOI: 10.1063/5.0206974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
The software for chemical interaction networks (SCINE) project aims at pushing the frontier of quantum chemical calculations on molecular structures to a new level. While calculations on individual structures as well as on simple relations between them have become routine in chemistry, new developments have pushed the frontier in the field to high-throughput calculations. Chemical relations may be created by a search for specific molecular properties in a molecular design attempt, or they can be defined by a set of elementary reaction steps that form a chemical reaction network. The software modules of SCINE have been designed to facilitate such studies. The features of the modules are (i) general applicability of the applied methodologies ranging from electronic structure (no restriction to specific elements of the periodic table) to microkinetic modeling (with little restrictions on molecularity), full modularity so that SCINE modules can also be applied as stand-alone programs or be exchanged for external software packages that fulfill a similar purpose (to increase options for computational campaigns and to provide alternatives in case of tasks that are hard or impossible to accomplish with certain programs), (ii) high stability and autonomous operations so that control and steering by an operator are as easy as possible, and (iii) easy embedding into complex heterogeneous environments for molecular structures taken individually or in the context of a reaction network. A graphical user interface unites all modules and ensures interoperability. All components of the software have been made available as open source and free of charge.
Collapse
Affiliation(s)
- Thomas Weymuth
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jan P Unsleber
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Paul L Türtscher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Miguel Steiner
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jan-Grimo Sobez
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Charlotte H Müller
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Maximilian Mörchen
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Veronika Klasovita
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stephanie A Grimmel
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Marco Eckhoff
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Katja-Sophia Csizi
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Francesco Bosia
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Moritz Bensberg
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Capone M, Romanelli M, Castaldo D, Parolin G, Bello A, Gil G, Vanzan M. A Vision for the Future of Multiscale Modeling. ACS PHYSICAL CHEMISTRY AU 2024; 4:202-225. [PMID: 38800726 PMCID: PMC11117712 DOI: 10.1021/acsphyschemau.3c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 05/29/2024]
Abstract
The rise of modern computer science enabled physical chemistry to make enormous progresses in understanding and harnessing natural and artificial phenomena. Nevertheless, despite the advances achieved over past decades, computational resources are still insufficient to thoroughly simulate extended systems from first principles. Indeed, countless biological, catalytic and photophysical processes require ab initio treatments to be properly described, but the breadth of length and time scales involved makes it practically unfeasible. A way to address these issues is to couple theories and algorithms working at different scales by dividing the system into domains treated at different levels of approximation, ranging from quantum mechanics to classical molecular dynamics, even including continuum electrodynamics. This approach is known as multiscale modeling and its use over the past 60 years has led to remarkable results. Considering the rapid advances in theory, algorithm design, and computing power, we believe multiscale modeling will massively grow into a dominant research methodology in the forthcoming years. Hereby we describe the main approaches developed within its realm, highlighting their achievements and current drawbacks, eventually proposing a plausible direction for future developments considering also the emergence of new computational techniques such as machine learning and quantum computing. We then discuss how advanced multiscale modeling methods could be exploited to address critical scientific challenges, focusing on the simulation of complex light-harvesting processes, such as natural photosynthesis. While doing so, we suggest a cutting-edge computational paradigm consisting in performing simultaneous multiscale calculations on a system allowing the various domains, treated with appropriate accuracy, to move and extend while they properly interact with each other. Although this vision is very ambitious, we believe the quick development of computer science will lead to both massive improvements and widespread use of these techniques, resulting in enormous progresses in physical chemistry and, eventually, in our society.
Collapse
Affiliation(s)
- Matteo Capone
- Department
of Physical and Chemical Sciences, University
of L’Aquila, L’Aquila 67010, Italy
| | - Marco Romanelli
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Davide Castaldo
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Giovanni Parolin
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Alessandro Bello
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
- Department
of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Gabriel Gil
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
- Instituto
de Cibernética, Matemática y Física (ICIMAF), La Habana 10400, Cuba
| | - Mirko Vanzan
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
- Department
of Physics, University of Milano, Milano 20133, Italy
| |
Collapse
|
5
|
Bowling PE, Dasgupta S, Herbert JM. Eliminating Imaginary Vibrational Frequencies in Quantum-Chemical Cluster Models of Enzymatic Active Sites. J Chem Inf Model 2024; 64:3912-3922. [PMID: 38648614 DOI: 10.1021/acs.jcim.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In constructing finite models of enzyme active sites for quantum-chemical calculations, atoms at the periphery of the model must be constrained to prevent unphysical rearrangements during geometry relaxation. A simple fixed-atom or "coordinate-lock" approach is commonly employed but leads to undesirable artifacts in the form of small imaginary frequencies. These preclude evaluation of finite-temperature free-energy corrections, limiting thermochemical calculations to enthalpies only. Full-dimensional vibrational frequency calculations are possible by replacing the fixed-atom constraints with harmonic confining potentials. Here, we compare that approach to an alternative strategy in which fixed-atom contributions to the Hessian are simply omitted. While the latter strategy does eliminate imaginary frequencies, it tends to underestimate both the zero-point energy and the vibrational entropy while introducing artificial rigidity. Harmonic confining potentials eliminate imaginary frequencies and provide a flexible means to construct active-site models that can be used in unconstrained geometry relaxations, affording better convergence of reaction energies and barrier heights with respect to the model size, as compared to models with fixed-atom constraints.
Collapse
Affiliation(s)
- Paige E Bowling
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States
| | - John M Herbert
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Csizi KS, Reiher M. Automated preparation of nanoscopic structures: Graph-based sequence analysis, mismatch detection, and pH-consistent protonation with uncertainty estimates. J Comput Chem 2024; 45:761-776. [PMID: 38124290 DOI: 10.1002/jcc.27276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Structure and function in nanoscale atomistic assemblies are tightly coupled, and every atom with its specific position and even every electron will have a decisive effect on the electronic structure, and hence, on the molecular properties. Molecular simulations of nanoscopic atomistic structures therefore require accurately resolved three-dimensional input structures. If extracted from experiment, these structures often suffer from severe uncertainties, of which the lack of information on hydrogen atoms is a prominent example. Hence, experimental structures require careful review and curation, which is a time-consuming and error-prone process. Here, we present a fast and robust protocol for the automated structure analysis and pH-consistent protonation, in short, ASAP. For biomolecules as a target, the ASAP protocol integrates sequence analysis and error assessment of a given input structure. ASAP allows for pK a prediction from reference data through Gaussian process regression including uncertainty estimation and connects to system-focused atomistic modeling described in Brunken and Reiher (J. Chem. Theory Comput. 16, 2020, 1646). Although focused on biomolecules, ASAP can be extended to other nanoscopic objects, because most of its design elements rely on a general graph-based foundation guaranteeing transferability. The modular character of the underlying pipeline supports different degrees of automation, which allows for (i) efficient feedback loops for human-machine interaction with a low entrance barrier and for (ii) integration into autonomous procedures such as automated force field parametrizations. This facilitates fast switching of the pH-state through on-the-fly system-focused reparametrization during a molecular simulation at virtually no extra computational cost.
Collapse
Affiliation(s)
- Katja-Sophia Csizi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Markus Reiher
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Brandt F, Jacob CR. Efficient automatic construction of atom-economical QM regions with point-charge variation analysis. Phys Chem Chem Phys 2023; 25:14484-14495. [PMID: 37190855 DOI: 10.1039/d3cp01263h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The setup of QM/MM calculations is not trivial since many decisions have to be made by the simulation scientist to achieve reasonable and consistent results. The main challenge to be tackled is the construction of the QM region to make sure to take into account all important parts of the adjacent environment and exclude less important ones. In our previous work [F. Brandt and Ch. R. Jacob, Systematic QM Region Construction in QM/MM Calculations Based on Uncertainty Quantification, J. Chem. Theory Comput., 2022, 18, 2584-2596.], we introduced the point charge variation analysis (PCVA) as a simple and reliable tool to systematically construct QM regions based on the sensitivity of the reaction energy with respect to variations of the MM point charges. Here, we assess several simplified variants of this PCVA approach for the example of catechol O-methyltransferase and apply PCVA for another system, the triosephosphate isomerase. Furthermore, we extend its scope by applying it to a DNA system. Our results indicate that PCVA offers an efficient and versatile approach of the automatic construction of atom-economical QM regions, but also identify possible pitfalls and limitations.
Collapse
Affiliation(s)
- Felix Brandt
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany.
| | - Christoph R Jacob
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany.
| |
Collapse
|
8
|
Csizi K, Reiher M. Universal
QM
/
MM
approaches for general nanoscale applications. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Markus Reiher
- Laboratorium für Physikalische Chemie ETH Zürich Zürich Switzerland
| |
Collapse
|
9
|
Shao X, Lopez AC, Khan Musa MR, Nouri MR, Pavanello M. Adaptive Subsystem Density Functional Theory. J Chem Theory Comput 2022; 18:6646-6655. [PMID: 36179128 DOI: 10.1021/acs.jctc.2c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Subsystem density functional theory (DFT) is emerging as a powerful electronic structure method for large-scale simulations of molecular condensed phases and interfaces. Key to its computational efficiency is the use of approximate nonadditive noninteracting kinetic energy functionals. Unfortunately, currently available nonadditive functionals lead to inaccurate results when the subsystems interact strongly such as when they engage in chemical reactions. This work disrupts the status quo by devising a workflow that extends subsystem DFT's applicability also to strongly interacting subsystems. This is achieved by implementing a fully automated adaptive definition of subsystems which is realized during geometry optimizations or ab initio molecular dynamics simulations. The new method prescribes subsystem merging and splitting events redistributing the resources (both for work and data) in an efficient way making use of modern parallelization strategies and object-oriented programming. We showcase the method with examples probing from moderate-to-strong inter-subsystem interactions, opening the door to using subsystem DFT for modeling chemical reactions in molecular condensed phases with a black box computational tool.
Collapse
Affiliation(s)
- Xuecheng Shao
- Department of Chemistry, Rutgers University, Newark, New Jersey07102, United States
| | | | - Md Rajib Khan Musa
- Department of Chemistry, Rutgers University, Newark, New Jersey07102, United States
| | - Mohammad Reza Nouri
- Department of Chemistry, Rutgers University, Newark, New Jersey07102, United States
| | - Michele Pavanello
- Department of Physics, Rutgers University, Newark, New Jersey07102, United States
| |
Collapse
|
10
|
Manathunga M, Götz AW, Merz KM. Computer-aided drug design, quantum-mechanical methods for biological problems. Curr Opin Struct Biol 2022; 75:102417. [PMID: 35779437 DOI: 10.1016/j.sbi.2022.102417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
Quantum chemistry enables to study systems with chemical accuracy (<1 kcal/mol from experiment) but is restricted to a handful of atoms due to its computational expense. This has led to ongoing interest to optimize and simplify these methods while retaining accuracy. Implementing quantum mechanical (QM) methods on modern hardware such as multiple-GPUs is one example of how the field is optimizing performance. Multiscale approaches like the so-called QM/molecular mechanical method are gaining popularity in drug discovery because they focus the application of QM methods on the region of choice (e.g., the binding site), while using efficient MM models to represent less relevant areas. The creation of simplified QM methods is another example, including the use of machine learning to create ultra-fast and accurate QM models. Herein, we summarize recent advancements in the development of optimized QM methods that enhance our ability to use these methods in computer aided drug discovery.
Collapse
Affiliation(s)
- Madushanka Manathunga
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States. https://twitter.com/@MaduManathunga
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, United States. https://twitter.com/@awgoetz
| | - Kenneth M Merz
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
11
|
Csizi K, Eckert L, Brunken C, Hofstetter TB, Reiher M. The Apparently Unreactive Substrate Facilitates the Electron Transfer for Dioxygen Activation in Rieske Dioxygenases. Chemistry 2022; 28:e202103937. [PMID: 35072969 PMCID: PMC9306888 DOI: 10.1002/chem.202103937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/29/2022]
Abstract
Rieske dioxygenases belong to the non-heme iron family of oxygenases and catalyze important cis-dihydroxylation as well as O-/N-dealkylation and oxidative cyclization reactions for a wide range of substrates. The lack of substrate coordination at the non-heme ferrous iron center, however, makes it particularly challenging to delineate the role of the substrate for productive O 2 activation. Here, we studied the role of the substrate in the key elementary reaction leading to O 2 activation from a theoretical perspective by systematically considering (i) the 6-coordinate to 5-coordinate conversion of the non-heme FeII upon abstraction of a water ligand, (ii) binding of O 2 , and (iii) transfer of an electron from the Rieske cluster. We systematically evaluated the spin-state-dependent reaction energies and structural effects at the active site for all combinations of the three elementary processes in the presence and absence of substrate using naphthalene dioxygenase as a prototypical Rieske dioxygenase. We find that reaction energies for the generation of a coordination vacancy at the non-heme FeII center through thermoneutral H2 O reorientation and exothermic O 2 binding prior to Rieske cluster oxidation are largely insensitive to the presence of naphthalene and do not lead to formation of any of the known reactive Fe-oxygen species. By contrast, the role of the substrate becomes evident after Rieske cluster oxidation and exclusively for the 6-coordinate non-heme FeII sites in that the additional electron is found at the substrate instead of at the iron and oxygen atoms. Our results imply an allosteric control of the substrate on Rieske dioxygenase reactivity to happen prior to changes at the non-heme FeII in agreement with a strategy that avoids unproductive O 2 activation.
Collapse
Affiliation(s)
- Katja‐Sophia Csizi
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Lina Eckert
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Christoph Brunken
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Thomas B. Hofstetter
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
| | - Markus Reiher
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| |
Collapse
|
12
|
Brandt F, Jacob CR. Systematic QM Region Construction in QM/MM Calculations Based on Uncertainty Quantification. J Chem Theory Comput 2022; 18:2584-2596. [PMID: 35271768 DOI: 10.1021/acs.jctc.1c01093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While QM/MM studies of enzymatic reactions are widely used in computational chemistry, the results of such studies are subject to numerous sources of uncertainty, and the effect of different choices by the simulation scientist that are required when setting up QM/MM calculations is often unclear. In particular, the selection of the QM region is crucial for obtaining accurate and reliable results. Simply including amino acids by their distance to the active site is mostly not sufficient as necessary residues are missing or unimportant residues are included without evidence. Here, we take a first step toward quantifying uncertainties in QM/MM calculations by assessing the sensitivity of QM/MM reaction energies with respect to variations of the MM point charges. We show that such a point charge variation analysis (PCVA) can be employed to judge the accuracy of QM/MM reaction energies obtained with a selected QM region and devise a protocol to systematically construct QM regions that minimize this uncertainty. We apply such a PCVA to the example of catechol O-methyltransferase and demonstrate that it provides a simple and reliable approach for the construction of the QM region. Our PCVA-based scheme is computationally efficient and requires only calculations for a system with a minimal QM region. Our work highlights the promise of applying methods of uncertainty quantification in computational chemistry.
Collapse
Affiliation(s)
- Felix Brandt
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| |
Collapse
|
13
|
Demapan D, Kussmann J, Ochsenfeld C, Cui Q. Factors That Determine the Variation of Equilibrium and Kinetic Properties of QM/MM Enzyme Simulations: QM Region, Conformation, and Boundary Condition. J Chem Theory Comput 2022; 18:2530-2542. [PMID: 35226489 PMCID: PMC9652774 DOI: 10.1021/acs.jctc.1c00714] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To analyze the impact of various technical details on the results of quantum mechanical (QM)/molecular mechanical (MM) enzyme simulations, including the QM region size, catechol-O-methyltransferase (COMT) is studied as a model system using an approximate QM/MM method (DFTB3/CHARMM). The results show that key equilibrium and kinetic properties for methyl transfer in COMT exhibit limited variations with respect to the size of the QM region, which ranges from ∼100 to ∼500 atoms in this study. With extensive sampling, local and global structural characteristics of the enzyme are largely conserved across the studied QM regions, while the nature of the transition state (e.g., secondary kinetic isotope effect) and reaction exergonicity are largely maintained. Deviations in the free energy profile with different QM region sizes are similar in magnitude to those observed with changes in other simulation protocols, such as different initial enzyme conformations and boundary conditions. Electronic structural properties, such as the covariance matrix of residual charge fluctuations, appear to exhibit rather long-range correlations, especially when the peptide backbone is included in the QM region; this observation holds when a range-separated DFT approach is used as the QM region, suggesting that delocalization error is unlikely the origin. Overall, the analyses suggest that multiple simulation details determine the results of QM/MM enzyme simulations with comparable contributions.
Collapse
Affiliation(s)
- Darren Demapan
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 7 (C), D-81377 Munich, Germany.,Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jörg Kussmann
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 7 (C), D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 7 (C), D-81377 Munich, Germany
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
14
|
Coupled- and Independent-Trajectory Approaches Based on the Exact Factorization Using the PyUNIxMD Package. Top Curr Chem (Cham) 2022; 380:8. [PMID: 35083549 DOI: 10.1007/s41061-021-00361-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
We present mixed quantum-classical approaches based on the exact factorization framework. The electron-nuclear correlation term in the exact factorization enables us to deal with quantum coherences by accounting for electronic and nuclear nonadiabatic couplings effectively within classical nuclei approximation. We compare coupled- and independent-trajectory approximations with each other to understand algorithms in description of the bifurcation of nuclear wave packets and the correct spatial distribution of electronic wave functions along with nuclear trajectories. Finally, we show numerical results for comparisons of coupled- and independent-trajectory approaches for the photoisomerization of a protonated Schiff base from excited state molecular dynamics (ESMD) simulations with the recently developed Python-based ESMD code, namely, the PyUNIxMD program.
Collapse
|
15
|
Steiner M, Reiher M. Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Top Catal 2022; 65:6-39. [PMID: 35185305 PMCID: PMC8816766 DOI: 10.1007/s11244-021-01543-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Autonomous computations that rely on automated reaction network elucidation algorithms may pave the way to make computational catalysis on a par with experimental research in the field. Several advantages of this approach are key to catalysis: (i) automation allows one to consider orders of magnitude more structures in a systematic and open-ended fashion than what would be accessible by manual inspection. Eventually, full resolution in terms of structural varieties and conformations as well as with respect to the type and number of potentially important elementary reaction steps (including decomposition reactions that determine turnover numbers) may be achieved. (ii) Fast electronic structure methods with uncertainty quantification warrant high efficiency and reliability in order to not only deliver results quickly, but also to allow for predictive work. (iii) A high degree of autonomy reduces the amount of manual human work, processing errors, and human bias. Although being inherently unbiased, it is still steerable with respect to specific regions of an emerging network and with respect to the addition of new reactant species. This allows for a high fidelity of the formalization of some catalytic process and for surprising in silico discoveries. In this work, we first review the state of the art in computational catalysis to embed autonomous explorations into the general field from which it draws its ingredients. We then elaborate on the specific conceptual issues that arise in the context of autonomous computational procedures, some of which we discuss at an example catalytic system. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11244-021-01543-9.
Collapse
Affiliation(s)
- Miguel Steiner
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
16
|
Bensberg M, Türtscher PL, Unsleber JP, Reiher M, Neugebauer J. Solvation Free Energies in Subsystem Density Functional Theory. J Chem Theory Comput 2022; 18:723-740. [PMID: 34985890 DOI: 10.1021/acs.jctc.1c00864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For many chemical processes the accurate description of solvent effects are vitally important. Here, we describe a hybrid ansatz for the explicit quantum mechanical description of solute-solvent and solvent-solvent interactions based on subsystem density functional theory and continuum solvation schemes. Since explicit solvent molecules may compromise the scalability of the model and transferability of the predicted solvent effect, we aim to retain both, for different solutes as well as for different solvents. The key for the transferability is the consistent subsystem decomposition of solute and solvent. The key for the scalability is the performance of subsystem DFT for increasing numbers of subsystems. We investigate molecular dynamics and stationary point sampling of solvent configurations and compare the resulting (Gibbs) free energies to experiment and theoretical methods. We can show that with our hybrid model reaction barriers and reaction energies are accurately reproduced compared to experimental data.
Collapse
Affiliation(s)
- Moritz Bensberg
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Paul L Türtscher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Jan P Unsleber
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
17
|
Baiardi A, Grimmel SA, Steiner M, Türtscher PL, Unsleber JP, Weymuth T, Reiher M. Expansive Quantum Mechanical Exploration of Chemical Reaction Paths. Acc Chem Res 2022; 55:35-43. [PMID: 34918903 DOI: 10.1021/acs.accounts.1c00472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quantum mechanical methods have been well-established for the elucidation of reaction paths of chemical processes and for the explicit dynamics of molecular systems. While they are usually deployed in routine manual calculations on reactions for which some insights are already available (typically from experiment), new algorithms and continuously increasing capabilities of modern computer hardware allow for exploratory open-ended computational campaigns that are unbiased and therefore enable unexpected discoveries. Highly efficient and even automated procedures facilitate systematic approaches toward the exploration of uncharted territory in molecular transformations and dynamics. In this work, we elaborate on such explorative approaches that range from reaction network explorations with (stationary) quantum chemical methods to explorative molecular dynamics and migrant wave packet dynamics. The focus is on recent developments that cover the following strategies. (i) Pruning search options for elementary reaction steps by heuristic rules based on the first-principles of quantum mechanics: Rules are required for reducing the combinatorial explosion of potentially reactive atom pairings, and rooting them in concepts derived from the electronic wave function makes them applicable to any molecular system. (ii) Enforcing reactive events by external biases: Inducing a reaction requires constraints that steer and direct elementary-step searches, which can be formulated in terms of forces, velocities, or supplementary potentials. (iii) Manual steering facilitated by interactive quantum mechanics: As ultrafast quantum chemical methods allow for real-time manual interactions with molecular systems, human-intuition-guided paths can be easily explored with suitable human-machine interfaces. (iv) New approaches for transition-state optimization with continuous curve representations can provide stable schemes to be driven in an automated way by allowing for an efficient tuning of the curve's parameters (instead of a manipulation of a collection of structures along the path), and (v) reactive molecular dynamics and direct wave packet propagation exploit the equations of motion of an underlying mechanical theory (usually, classical Newtonian mechanics or Schrödinger quantum mechanics). Explorative approaches are likely to replace the current state of the art in computational chemistry, because they reduce the human effort to be invested in reaction path elucidations, they are less prone to errors and bias-free, and they cover more extensive regions of the relevant configuration space. As a result, computational investigations that rely on these techniques are more likely to deliver surprising discoveries.
Collapse
Affiliation(s)
- Alberto Baiardi
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stephanie A. Grimmel
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Miguel Steiner
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Paul L. Türtscher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jan P. Unsleber
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Thomas Weymuth
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
18
|
Affiliation(s)
- Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
19
|
Harder, better, faster, stronger: Large-scale QM and QM/MM for predictive modeling in enzymes and proteins. Curr Opin Struct Biol 2021; 72:9-17. [PMID: 34388673 DOI: 10.1016/j.sbi.2021.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022]
Abstract
Computational prediction of enzyme mechanism and protein function requires accurate physics-based models and suitable sampling. We discuss recent advances in large-scale quantum mechanical (QM) modeling of biochemical systems that have reduced the cost of high-accuracy models. Tradeoffs between sampling and accuracy have motivated modeling with molecular mechanics (MM) in a multiscale QM/MM or iterative approach. Limitations to both conventional density-functional theory and classical MM force fields remain for describing noncovalent interactions in comparison to experiment or wavefunction theory. Because predictions of enzyme action (i.e. electrostatics), free energy barriers, and mechanisms are sensitive to the protocol and embedding method in QM/MM, convergence tests and systematic methods for quantifying QM-level interactions are a needed, active area of development.
Collapse
|
20
|
Lee IS, Ha JK, Han D, Kim TI, Moon SW, Min SK. PyUNIxMD: A Python-based excited state molecular dynamics package. J Comput Chem 2021; 42:1755-1766. [PMID: 34197646 PMCID: PMC8362049 DOI: 10.1002/jcc.26711] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 01/17/2023]
Abstract
Theoretical/computational description of excited state molecular dynamics is nowadays a crucial tool for understanding light-matter interactions in many materials. Here we present an open-source Python-based nonadiabatic molecular dynamics program package, namely PyUNIxMD, to deal with mixed quantum-classical dynamics for correlated electron-nuclear propagation. The PyUNIxMD provides many interfaces for quantum chemical calculation methods with commercial and noncommercial ab initio and semiempirical quantum chemistry programs. In addition, the PyUNIxMD offers many nonadiabatic molecular dynamics algorithms such as fewest-switch surface hopping and its derivatives as well as decoherence-induced surface hopping based on the exact factorization (DISH-XF) and coupled-trajectory mixed quantum-classical dynamics (CTMQC) for general purposes. Detailed structures and flows of PyUNIxMD are explained for the further implementations by developers. We perform a nonadiabatic molecular dynamics simulation for a molecular motor system as a simple demonstration.
Collapse
Affiliation(s)
- In Seong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Jong-Kwon Ha
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Daeho Han
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Tae In Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sung Wook Moon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|