1
|
Sumita M, Terayama K, Ishida S, Suga K, Saito S, Tsuda K. Qcforever2: Advanced Automation of Quantum Chemistry Computations. J Comput Chem 2025; 46:e70017. [PMID: 39865308 DOI: 10.1002/jcc.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/28/2025]
Abstract
QCforever is a wrapper designed to automatically and simultaneously calculate various physical quantities using quantum chemical (QC) calculation software for blackbox optimization in chemical space. We have updated it to QCforever2 to search the conformation and optimize density functional parameters for a more accurate and reliable evaluation of an input molecule. In blackbox optimization, QCforever2 can work as compactly arranged surrogate models for costly chemical experiments. QCforever2 is the future of QC calculations and would be a good companion for chemical laboratories, providing more reliable search and exploitation in the chemical space.
Collapse
Affiliation(s)
- Masato Sumita
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Kei Terayama
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Japan
- MDX Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Shoichi Ishida
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Japan
| | - Kensuke Suga
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Shohei Saito
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Koji Tsuda
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
2
|
Terayama K, Osaki Y, Fujita T, Tamura R, Naito M, Tsuda K, Matsui T, Sumita M. Koopmans' Theorem-Compliant Long-Range Corrected (KTLC) Density Functional Mediated by Black-Box Optimization and Data-Driven Prediction for Organic Molecules. J Chem Theory Comput 2023; 19:6770-6781. [PMID: 37729470 DOI: 10.1021/acs.jctc.3c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Density functional theory (DFT) is a significant computational tool that has substantially influenced chemistry, physics, and materials science. DFT necessitates parametrized approximation for determining an expected value. Hence, to predict the properties of a given molecule using DFT, appropriate parameters of the functional should be set for each molecule. Herein, we optimize the parameters of range-separated functionals (LC-BLYP and CAM-B3LYP) via Bayesian optimization (BO) to satisfy Koopmans' theorem. Our results demonstrate the effectiveness of the BO in optimizing functional parameters. Particularly, Koopmans' theorem-compliant LC-BLYP (KTLC-BLYP) shows results comparable to the experimental UV-absorption values. Furthermore, we prepared an optimized parameter dataset of KTLC-BLYP for over 3000 molecules through BO for satisfying Koopmans' theorem. We have developed a machine learning model on this dataset to predict the parameters of the LC-BLYP functional for a given molecule. The prediction model automatically predicts the appropriate parameters for a given molecule and calculates the corresponding values. The approach in this paper would be useful to develop new functionals and to update the previously developed functionals.
Collapse
Affiliation(s)
- Kei Terayama
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku Kanagawa 230-0045, Japan
- Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- MDX Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yamato Osaki
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Takehiro Fujita
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Ryo Tamura
- Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Masanobu Naito
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Koji Tsuda
- Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan
| | - Toru Matsui
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Masato Sumita
- Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
3
|
Wallace CS, Davis MP, Korter TM. Low-Frequency Raman Spectroscopy of Pure and Cocrystallized Mycophenolic Acid. Pharmaceutics 2023; 15:1924. [PMID: 37514110 PMCID: PMC10384077 DOI: 10.3390/pharmaceutics15071924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The aqueous solubility of solid-state pharmaceuticals can often be enhanced by cocrystallization with a coformer to create a binary cocrystal with preferred physical properties. Greater understanding of the internal and external forces that dictate molecular structure and intermolecular packing arrangements enables more efficient design of new cocrystals. Low-frequency (sub-200 cm-1) Raman spectroscopy experiments and solid-state density functional theory simulations have been utilized together to investigate the crystal lattice vibrations of mycophenolic acid, an immunosuppressive drug, in its pure form and as a cocrystal with 2,2'-dipyridylamine. The lattice vibrations primarily consist of large-amplitude translations and rotations of the crystal components, thereby providing insights into the critical intermolecular forces governing cohesion of the molecular solids. The simulations reveal that despite mycophenolic acid having a significantly unfavorable conformation in the cocrystal as compared to the pure solid, the cocrystal exhibits greater thermodynamic stability over a wide temperature range. The energetic penalty due to the conformational strain is more than compensated for by the strong intermolecular forces between the drug and 2,2'-dipyridylamine. Quantifying the balance of internal and external energy factors in cocrystal formation indicates a path forward in the development of future mycophenolic acid cocrystals.
Collapse
Affiliation(s)
- Catherine S Wallace
- Department of Chemistry, Syracuse University, 1-133 Center for Science and Technology, Syracuse, NY 13244-4100, USA
| | - Margaret P Davis
- Department of Chemistry, Syracuse University, 1-133 Center for Science and Technology, Syracuse, NY 13244-4100, USA
| | - Timothy M Korter
- Department of Chemistry, Syracuse University, 1-133 Center for Science and Technology, Syracuse, NY 13244-4100, USA
| |
Collapse
|
4
|
Akamatsu M, Yamanaga K, Tanaka K, Kanehara Y, Sumita M, Sakai K, Sakai H. Anion-π Interactions in Monolayers Formed by Amphiphilic Electron-Deficient Aromatic Compounds at Air/Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5833-5839. [PMID: 37055236 DOI: 10.1021/acs.langmuir.3c00127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Biological systems precisely and selectively control ion binding through various chemical reactions, molecular recognition, and transport by virtue of effective molecular interactions with biological membranes and proteins. Because ion binding is inhibited in highly polar media, recognition systems for anions in aqueous media, which are relevant to biological and environmental systems, are still limited. In this study, we explored the anion binding of Langmuir monolayers formed by amphiphilic naphthalenediimide (NDI) derivatives with a series of substituents at air/water interfaces via anion-π interactions. Density functional theory (DFT) simulations revealed that the binding of anions originating from anion-π interactions is related to the electron density of the anions. At the air/water interfaces, amphiphilic NDI derivatives formed Langmuir monolayers, and the addition of anions caused expansion of the Langmuir monolayers. The anions with larger hydration energies related to electron density showed larger binding constants (Ka) for 1:1 stoichiometry with the NDI derivatives. The loosely packed monolayer formed by the amphiphilic NDI derivatives with bromine groups showed a better anion response. In contrast, the binding of NO3- was significantly enhanced in the highly packed monolayer. These results indicate that the packing of NDI derivatives with rigid aromatic rings influenced the binding of the anions. These results provide insight into ion binding using the air/water interface as a promising recognition site for mimicking biological membranes. In future, sensing devices can be developed using Langmuir-Blodgett films on electrodes. Furthermore, the capture of anions on electron-deficient aromatic compounds can lead to doping or composition technologies for n-type semiconductors.
Collapse
Affiliation(s)
- Masaaki Akamatsu
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan
| | - Koji Yamanaga
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kohei Tanaka
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yurina Kanehara
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masato Sumita
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kenichi Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideki Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
5
|
Sumita M, Terayama K, Tamura R, Tsuda K. QCforever: A Quantum Chemistry Wrapper for Everyone to Use in Black-Box Optimization. J Chem Inf Model 2022; 62:4427-4434. [PMID: 36074116 PMCID: PMC9518232 DOI: 10.1021/acs.jcim.2c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/29/2022]
Abstract
To obtain observable physical or molecular properties such as ionization potential and fluorescent wavelength with quantum chemical (QC) computation, multi-step computation manipulated by a human is required. Hence, automating the multi-step computational process and making it a black box that can be handled by anybody are important for effective database construction and fast realistic material design through the framework of black-box optimization where machine learning algorithms are introduced as a predictor. Here, we propose a Python library, QCforever, to automate the computation of some molecular properties and chemical phenomena induced by molecules. This tool just requires a molecule file for providing its observable properties, automating the computation process of molecular properties (for ionization potential, fluorescence, etc.) and output analysis for providing their multi-values for evaluating a molecule. Incorporating the tool in black-box optimization, we can explore molecules that have properties we desired within the limitation of QC computation.
Collapse
Affiliation(s)
- Masato Sumita
- RIKEN
Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
- International
Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Kei Terayama
- RIKEN
Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
- Graduate
School of Medical Life Science, Yokohama
City University, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ryo Tamura
- RIKEN
Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
- International
Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba 305-0044, Japan
- Graduate
School of Frontier Sciences, The University
of Tokyo, Kashiwa 277-8561, Japan
- Research
and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba 305-0047, Japan
| | - Koji Tsuda
- RIKEN
Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
- Graduate
School of Frontier Sciences, The University
of Tokyo, Kashiwa 277-8561, Japan
- Research
and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba 305-0047, Japan
| |
Collapse
|
6
|
Sumita M, Terayama K, Suzuki N, Ishihara S, Tamura R, Chahal MK, Payne DT, Yoshizoe K, Tsuda K. De novo creation of a naked eye-detectable fluorescent molecule based on quantum chemical computation and machine learning. SCIENCE ADVANCES 2022; 8:eabj3906. [PMID: 35263133 PMCID: PMC8906732 DOI: 10.1126/sciadv.abj3906] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Designing fluorescent molecules requires considering multiple interrelated molecular properties, as opposed to properties that straightforwardly correlated with molecular structure, such as light absorption of molecules. In this study, we have used a de novo molecule generator (DNMG) coupled with quantum chemical computation (QC) to develop fluorescent molecules, which are garnering significant attention in various disciplines. Using massive parallel computation (1024 cores, 5 days), the DNMG has produced 3643 candidate molecules. We have selected an unreported molecule and seven reported molecules and synthesized them. Photoluminescence spectrum measurements demonstrated that the DNMG can successfully design fluorescent molecules with 75% accuracy (n = 6/8) and create an unreported molecule that emits fluorescence detectable by the naked eye.
Collapse
Affiliation(s)
- Masato Sumita
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kei Terayama
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Kanagawa 230-0045, Japan
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
- Medical Sciences Innovation Hub Program, RIKEN Cluster for Science, Technology and Innovation Hub, Tsurumi-ku, Kanagawa 230-0045, Japan
| | - Naoya Suzuki
- Materials Science and Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Shinsuke Ishihara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ryo Tamura
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan
| | - Mandeep K. Chahal
- Department of Chemistry, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, UK
| | - Daniel T. Payne
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- International Center for Young Scientists (ICYS), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kazuki Yoshizoe
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Research Institute for Information Technology (RIIT), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka City, Fukuoka 819-0395, Japan
| | - Koji Tsuda
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|