1
|
Casanova-Páez M, Neese F. Core-Excited States for Open-Shell Systems in Similarity-Transformed Equation-of-Motion Theory. J Chem Theory Comput 2025. [PMID: 39873218 DOI: 10.1021/acs.jctc.4c01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
X-ray absorption spectroscopy (XAS) is a powerful method for exploring molecular electronic structure by exciting core electrons into higher unoccupied molecular orbitals. In this study, we present the first integration of the spin-unrestricted similarity-transformed equation-of-motion coupled cluster method (CVS-USTEOM-CCSD) for core-excited and core-ionized states into the ORCA quantum chemistry package. Using the core-valence separation (CVS) approach, we evaluate the accuracy of CVS-USTEOM-CCSD across 13 open-shell organic systems, covering over 20 core excitations with diverse spin multiplicities (doublet, triplet, and quartet). The implementation leverages automated active space selection, incorporating CIS natural orbitals to efficiently capture electronic transitions. We benchmark the predicted K- and L-edge spectra against experimental data, underscoring the accuracy of the CVS-USTEOM-CCSD method for high-precision core excitation studies.
Collapse
Affiliation(s)
- Marcos Casanova-Páez
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Lin Z, Liu J, Zhang C, Zheng X, Cheng L. Elucidating Anomalous Intensity Ratios in Chlorine L-Edge X-ray Absorption Spectroscopy: Multiplet Effects and Core Rydberg Transitions. J Phys Chem A 2024; 128:8373-8383. [PMID: 39312206 DOI: 10.1021/acs.jpca.4c04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A relativistic core-valence-separated equation-of-motion coupled cluster (CVS-EOM-CC) study of chlorine L2,3-edge X-ray absorption near-edge structure (XANES) spectra using CH3Cl and CH2ICl as representative molecules is reported. The nearly identical intensity for the main features in the L2- and L3-edge XANES spectra is attributed to multiplet effects and the overlap between core-valence and core Rydberg transitions. The multiplet effects originating from the interaction between the core hole and the C-Cl σ* orbitals account for around half of the deviation of the L3 and L2 intensity ratio from the 2:1 ratio of the numbers of 2p3/2 and 2p1/2 electrons. The 2p3/2 → 4s core Rydberg transitions are shown to overlap with the 2p1/2 → σ* transitions and contribute to the other half of the intensity anomaly. We demonstrate that triple excitations in CVS-EOM-CC calculations play important roles in accurate simulation of the overlap between the 2p1/2 → σ* and 2p3/2 → 4s transitions.
Collapse
Affiliation(s)
- Zhe Lin
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Junzi Liu
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xuechen Zheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Ahn DH, Nakajima T, Hirao K, Song JW. Long-range Corrected Density Functional Theory Including a Two-Gaussian Hartree-Fock Operator for High Accuracy Core-excitation Energy Calculations of Both the Second- and Third-Row Atoms (LC2gau-core-BOP). J Chem Theory Comput 2024. [PMID: 39106473 DOI: 10.1021/acs.jctc.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
In the previous work, LCgau-core-BOP, which includes the short-range interelectronic Gaussian attenuating Hartree-Fock (HF) exchange to the long-range HF exchange, showed high accuracy core-excitation energies from 1s orbitals of the second-row atoms (1s → π*, 1s → σ*, 1s → n*, and 1s → Rydberg), but underestimates the core-excitation energies from 1s orbitals of the third-row atoms. To improve this, we added one more Gaussian attenuating HF exchange to LCgau-core-BOP. We named it LC2gau-core-BOP, which achieves a mean absolute error (MAE) of 0.6 and 0.3 eV for core excitation energies of the second- and third-row atoms of the tested small molecules, respectively. We found that the inclusion of the short-range interelectronic HF exchange at a distance ranging from 0.2 to 0.6 a.u. contributes to the increase of performances on 1s orbital energy calculations of the second-row atoms, while the inclusion of more short-range interelectronic HF exchange at a distance ranging from 0 to 0.2 a.u. does to the increase of performance on 1s orbital energy calculations of the third-row atoms. It is notable that all of these improvements were accomplished using flexible Gaussian attenuating HF exchange inclusion. LC2gau-core-BOP shows deviations of less than 0.8 eV from experimental values for all of the core-excitation energies of the tested medium-size molecules consisting of thymine, oxazole, glycine, and dibenzothiophene sulfone. Moreover, by optimizing one parameter of the OP correlation functional, LC2gau-core-BOP provides atomization energies over the G3 test set with an accuracy comparable to that of B3LYP.
Collapse
Affiliation(s)
- Dae-Hwan Ahn
- Department of Chemistry Education, Daegu University, Gyeongsan-si 113-8656, Korea
| | | | - Kimihiko Hirao
- RIKEN Center for Computational Science, Kobe 650-0047, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8501, Japan
| | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Gyeongsan-si 113-8656, Korea
| |
Collapse
|
4
|
Manna A, Jangid B, Pant R, Dutta AK. Efficient State-Specific Natural Orbital Based Equation of Motion Coupled Cluster Method for Core-Ionization Energies: Theory, Implementation, and Benchmark. J Chem Theory Comput 2024. [PMID: 39073757 DOI: 10.1021/acs.jctc.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We have implemented a reduced-cost partial triples correction scheme to the equation of motion coupled cluster method for core-ionization energy based on state-specific natural orbitals. The second-order Algebraic Diagrammatic Construction (ADC) method is used to generate the state-specific natural orbital, which provides quicker convergence of the core-IP value with respect to the size of the virtual space than that observed in standard MP2-based natural orbitals. The error due to truncation of the virtual orbital can be reduced by using a perturbative correction. The accuracy of the method can be controlled by a single threshold, and there is a black box to use. The inclusion of the partial triples correction in the natural orbital based EOM-CCSD method greatly improves the agreement of the results with the experiment. The efficiency of the present implementation is demonstrated by calculating the core-ionization energy of a molecule containing 60 atoms and more than 2000 basis functions.
Collapse
Affiliation(s)
- Amrita Manna
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Bhavnesh Jangid
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rakesh Pant
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
Menezes HNS, Júnior HCS, Ferreira GB. Ab initio investigation of the geometrical behavior in solution and electronic structure of the anion complexes [bis(1,3-dithiole-2-thione-4,5-dithiolate)M], for M = Bi(III), Sb(III), and Zn(II). J Mol Model 2024; 30:258. [PMID: 38976085 DOI: 10.1007/s00894-024-06052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
CONTEXT 1,3-Dithiole-2-thione-4,5-dithiolate (dmit) ligands are known for their conductive and optical properties. Dmit compounds have been assessed for use in sensor devices, information storage, spintronics, and optical material applications. Associations with various metallic centers endow dmit complexes with magnetic, optical, conductive, and antioxidant properties. Optical doping can facilitate the fabrication of magnetic conductor materials from ground-state nonmagnetic cations. While most studied complexes involve transition-metal centers due to their diverse chemistry, compounds with representative elements are less explored in the literature. This study investigated the structural and electronic properties of bisdmit complexes with representative Bi(III), Sb(III), and Zn(II) cations. AIMD calculations revealed two new geometries for Bi(III) and Zn(II) complexes, diverging from the isolated geometry typically used in quantum chemical calculations. The coordination of acetonitrile molecules to the cationic centers of the complexes resulted in unstable structures, while the dimerization of the complexes was stable. SA-CASSCF/NEVPT2 calculations were applied to the structures of the isolated complexes and stable dimers, confirming the multireference character of the electronic structure of the three systems and the multiconfigurational character of the Bi(III) complex. The electronic spectra simulated by the STEOM-DLPNO-CCSD calculations accurately reproduced the experimental UV‒Vis spectra indicating the participation of the isolated Bi(III) dmit complex and its dimeric form in solution. METHODOLOGY AIMD calculations of the dmit salts were conducted using the GFN2-xTB method with 60 explicit acetonitrile molecules as the solvent at 300 K for a total simulation time of 50.0 ps, with printing intervals of 0.5 fs. The final geometries were optimized employing the PBEh-3c compound method, incorporating implicit conductor-like polarizable continuum model (CPCM) solvation for acetonitrile. Local energy decomposition (LED) analysis at the DLPNO-CCSD(T)/Def2-TZVP level of theory was utilized to investigate the stability of the complex geometries identified by AIMD. The electronic structures of the complexes were assessed using the SA-CASSCF/NEVPT2/Def2-TZVP method to confirm the multiconfigurational and multireference nature of their electronic structures. Electronic spectra were analyzed using the STEOM-DLPNO-CCSD/Def2-TZVP method, with CPCM used to simulate an acetonitrile medium.
Collapse
Affiliation(s)
- Heloisa N S Menezes
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense, Outeiro de S. João Batista s/n., Centro, Niterói, RJ, 24210-130, Brazil
| | - Henrique C S Júnior
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Agronomia, Porto Alegre, RS, 90650-001, Brazil
| | - Glaucio B Ferreira
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense, Outeiro de S. João Batista s/n., Centro, Niterói, RJ, 24210-130, Brazil.
| |
Collapse
|
6
|
Yuan X, Halbert L, Visscher L, Pereira Gomes AS. Frequency-Dependent Quadratic Response Properties and Two-Photon Absorption from Relativistic Equation-of-Motion Coupled Cluster Theory. J Chem Theory Comput 2023; 19:9248-9259. [PMID: 38079602 DOI: 10.1021/acs.jctc.3c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
We present the implementation of quadratic response theory based upon the relativistic equation-of-motion coupled cluster method. We showcase our implementation, whose generality allows us to consider both time-dependent and time-independent electric and magnetic perturbations, by considering the static and frequency-dependent hyperpolarizability of hydrogen halides (HX, X = F-At), providing comprehensive insights into their electronic response characteristics. Additionally, we evaluated the Verdet constant for noble gases Xe and Rn and discussed the relative importance of relativistic and electron correlation effects for these magneto-optical properties. Finally, we calculate the two-photon absorption cross sections of transition [ns1S0 → (n + 1)s1S0] of Ga+ and In+, which are suggested as candidates for new ion clocks. As our implementation allows for the use of nonrelativistic Hamiltonians as well, we have compared our EOM-QRCC results to the QR-CC implementation in the DALTON code and show that the differences between CC and EOMCC response are in general smaller than 5% for the properties considered. Collectively, the results underscore the versatility of our implementation and its potential as a benchmark tool for other approximated models, such as density functional theory for higher-order properties.
Collapse
Affiliation(s)
- Xiang Yuan
- Physique des Lasers Atomes et Molecules, Universite de Lille, F-59000 Lille, France
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Loïc Halbert
- Physique des Lasers Atomes et Molecules, Universite de Lille, F-59000 Lille, France
| | - Lucas Visscher
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
7
|
Mashkovtsev D, Orimoto Y, Aoki Y. Fast and Accurate Calculation of the UV-Vis Spectrum with the Modified Local Excitation Approximation. J Chem Theory Comput 2023; 19:5548-5562. [PMID: 37471461 DOI: 10.1021/acs.jctc.3c00266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The local excitation approximation (LEA), a method for the calculation of electronic excitations localized in a specific region of a molecule, has been modified with new approaches to enhance the accuracy of the original method. The primary concept behind LEA involves isolating the region of interest as a submolecule from the full molecule using a localization method, followed by calculating electronic excitations solely within this submolecule. In this study, we examined approaches that improve the accuracy in describing the region of interest, particularly its molecular orbital energies. Additionally, the localization method was extended with a new projection technique to accelerate calculations. These approaches were studied in time-dependent density functional theory (TDDFT) calculations applied to four testing systems with a chromophore as the region of interest: two basic linear molecules, acrolein surrounded by 24 water molecules, and a model of a green fluorescent protein. For all studied systems, the results of TDDFT calculations combined with LEA exhibited near-zero error when groups of atoms adjacent to the chromophore were explicitly included in the submolecule. This was achieved with at least a quadratic speedup of the calculation time as a function of the submolecule size.
Collapse
Affiliation(s)
- Denis Mashkovtsev
- Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| | - Yuuichi Orimoto
- Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| | - Yuriko Aoki
- Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| |
Collapse
|
8
|
Troß J, Carter-Fenk K, Cole-Filipiak NC, Schrader P, Word M, McCaslin LM, Head-Gordon M, Ramasesha K. Excited-State Dynamics during Primary C-I Homolysis in Acetyl Iodide Revealed by Ultrafast Core-Level Spectroscopy. J Phys Chem A 2023; 127:4103-4114. [PMID: 37103479 DOI: 10.1021/acs.jpca.3c01414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In typical carbonyl-containing molecules, bond dissociation events follow initial excitation to nπC═O* states. However, in acetyl iodide, the iodine atom gives rise to electronic states with mixed nπC═O* and nσC-I* character, leading to complex excited-state dynamics, ultimately resulting in dissociation. Using ultrafast extreme ultraviolet (XUV) transient absorption spectroscopy and quantum chemical calculations, we present an investigation of the primary photodissociation dynamics of acetyl iodide via time-resolved spectroscopy of core-to-valence transitions of the I atom after 266 nm excitation. The probed I 4d-to-valence transitions show features that evolve on sub-100-fs time scales, reporting on excited-state wavepacket evolution during dissociation. These features subsequently evolve to yield spectral signatures corresponding to free iodine atoms in their spin-orbit ground and excited states with a branching ratio of 1.1:1 following dissociation of the C-I bond. Calculations of the valence excitation spectrum via equation-of-motion coupled cluster with single and double substitutions (EOM-CCSD) show that initial excited states are of spin-mixed character. From the initially pumped spin-mixed state, we use a combination of time-dependent density functional theory (TDDFT)-driven nonadiabatic ab initio molecular dynamics and EOM-CCSD calculations of the N4,5 edge to reveal a sharp inflection point in the transient XUV signal that corresponds to rapid C-I homolysis. By examining the molecular orbitals involved in the core-level excitations at and around this inflection point, we are able to piece together a detailed picture of C-I bond photolysis in which d → σ* transitions give way to d → p excitations as the bond dissociates. We also report theoretical predictions of short-lived, weak 4d → 5d transitions in acetyl iodide, validated by weak bleaching in the experimental transient XUV spectra. This joint experimental-theoretical effort has thus unraveled the detailed electronic structure and dynamics of a strongly spin-orbit coupled system.
Collapse
Affiliation(s)
- Jan Troß
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Kevin Carter-Fenk
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Neil C Cole-Filipiak
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Paul Schrader
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Mi'Kayla Word
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Laura M McCaslin
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Krupa Ramasesha
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| |
Collapse
|
9
|
Datar A, Wright C, Matthews DA. Theoretical Investigation of the X-ray Stark Effect in Small Molecules. J Phys Chem A 2023; 127:1576-1587. [PMID: 36787229 DOI: 10.1021/acs.jpca.2c08311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
We have studied the Stark effect in the soft x-ray region for various small molecules by calculating the field-dependent x-ray absorption spectra. This effect is explained in terms of the response of molecular orbitals (core and valence), the molecular dipole moment, and the molecular geometry to the applied electric field. A number of consistent trends are observed linking the computed shifts in absorption energies and intensities with specific features of the molecular electronic structure. We find that both the virtual molecular orbitals (valence and/or Rydberg) as well as the core orbitals contribute to observed trends in a complementary fashion. This initial study highlights the potential impact of x-ray Stark spectroscopy as a tool to study electronic structure and environmental perturbations at a submolecular scale.
Collapse
Affiliation(s)
- Avdhoot Datar
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Catherine Wright
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Devin A Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
10
|
Mester D, Kállay M. Double-Hybrid Density Functional Theory for Core Excitations: Theory and Benchmark Calculations. J Chem Theory Comput 2023; 19:1310-1321. [PMID: 36721871 PMCID: PMC9979613 DOI: 10.1021/acs.jctc.2c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The double-hybrid (DH) time-dependent density functional theory is extended to core excitations. Two different DH formalisms are presented utilizing the core-valence separation (CVS) approximation. First, a CVS-DH variant is introduced relying on the genuine perturbative second-order correction, while an iterative analogue is also presented using our second-order algebraic-diagrammatic construction [ADC(2)]-based DH ansatz. The performance of the new approaches is tested for the most popular DH functionals using the recently proposed XABOOM [J. Chem. Theory Comput.2021, 17, 1618] benchmark set. In order to make a careful comparison, the accuracy and precision of the methods are also inspected. Our results show that the genuine approaches are highly competitive with the more advanced CVS-ADC(2)-based methods if only excitation energies are required. In contrast, as expected, significant differences are observed in oscillator strengths; however, the precision is acceptable for the genuine functionals as well. Concerning the performance of the CVS-DH approaches, the PBE0-2/CVS-ADC(2) functional is superior, while its spin-opposite-scaled variant is also recommended as a cost-effective alternative. For these approaches, significant improvements are realized in the error measures compared with the popular CVS-ADC(2) method.
Collapse
Affiliation(s)
- Dávid Mester
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3, H-1111Budapest, Hungary,ELKH-BME
Quantum Chemistry Research Group, Müegyetem rkp. 3, H-1111Budapest, Hungary,MTA-BME
Lendület Quantum Chemistry Research Group, Müegyetem rkp. 3, H-1111Budapest, Hungary,
| | - Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3, H-1111Budapest, Hungary,ELKH-BME
Quantum Chemistry Research Group, Müegyetem rkp. 3, H-1111Budapest, Hungary,MTA-BME
Lendület Quantum Chemistry Research Group, Müegyetem rkp. 3, H-1111Budapest, Hungary,
| |
Collapse
|
11
|
Pant R, Ranga S, Bachhar A, Dutta AK. Pair Natural Orbital Equation-of-Motion Coupled-Cluster Method for Core Binding Energies: Theory, Implementation, and Benchmark. J Chem Theory Comput 2022; 18:4660-4673. [PMID: 35786933 DOI: 10.1021/acs.jctc.2c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the theory and implementation of a lower scaling core-valence separated equation-of-motion coupled-cluster approach based on domain-based local pair natural orbitals for core binding energies. The accuracy of the new method has been compared with that of the standard equation-of-motion coupled-cluster method and experimentally measured results. The use of pair natural orbitals significantly reduces the computation cost and can be applied to large molecules.
Collapse
Affiliation(s)
- Rakesh Pant
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Santosh Ranga
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arnab Bachhar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
12
|
Zheng X, Zhang C, Jin Z, Southworth SH, Cheng L. Benchmark relativistic delta-coupled-cluster calculations of K-edge core-ionization energies of third-row elements. Phys Chem Chem Phys 2022; 24:13587-13596. [PMID: 35616685 DOI: 10.1039/d2cp00993e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A benchmark computational study of K-edge core-ionization energies of third-row elements using relativistic delta-coupled-cluster (ΔCC) methods and a revised core-valence separation (CVS) scheme is reported. High-level relativistic (HLR) corrections beyond the spin-free exact two-component theory in its one-electron variant (SFX2C-1e), including the contributions from two-electron picture-change effects, spin-orbit coupling, the Breit term, and quantum electrodynamics effects, have been taken into account and demonstrated to play an important role. Relativistic ΔCC calculations are shown to provide accurate results for core-ionization energies of third-row elements. The SFX2C-1e-CVS-ΔCC results augmented with HLR corrections show a maximum deviation of less than 0.5 eV with respect to experimental values.
Collapse
Affiliation(s)
- Xuechen Zheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Zheqi Jin
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Stephen H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
13
|
Simons M, Matthews DA. Accurate Core-Excited States via Inclusion of Core Triple Excitations in Similarity-Transformed Equation-of-Motion Theory. J Chem Theory Comput 2022; 18:3759-3765. [PMID: 35536592 DOI: 10.1021/acs.jctc.2c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The phenomenon of orbital relaxation upon excitation of core electrons is a major problem in the linear-response treatment of core-hole spectroscopies. Rather than addressing relaxation through direct dynamical correlation of the excited state via equation-of-motion coupled cluster theory (EOMEE-CC), we extend the alternative similarity-transformed equation-of-motion coupled cluster theory (STEOMEE-CC) by including the core-valence separation (CVS) and correlation of triple excitations only within the calculation of core ionization energies. This new method, CVS-STEOMEE-CCSD+cT, significantly improves on CVS-EOMEE-CCSD and unmodified CVS-STEOMEE-CCSD when compared to full CVS-EOM-CCSDT for K-edge core-excitation energies of a set of small molecules. The improvement in both absolute and relative (shifted) peak positions is nearly as good as that for transition-potential coupled cluster (TP-CC), which includes an explicit treatment of orbital relaxation, and CVS-EOMEE-CCSD*, which includes a perturbative treatment of triple excitations.
Collapse
Affiliation(s)
- Megan Simons
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Devin A Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|