1
|
Monti M, Biancorosso L, Coccia E. Time-Resolved Circular Dichroism in Molecules: Experimental and Theoretical Advances. Molecules 2024; 29:4049. [PMID: 39274897 PMCID: PMC11396666 DOI: 10.3390/molecules29174049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
Following changes in chirality can give access to relevant information on the function or reactivity of molecular systems. Time-resolved circular dichroism (TRCD) spectroscopy proves to be a valid tool to achieve this goal. Depending on the class of molecules, different temporal ranges, spanning from seconds to femtoseconds, need to be investigated to observe such chiroptical changes. Therefore, over the years, several approaches have been adopted to cover the timescale of interest, especially based on pump-probe schemes. Moreover, various theoretical approaches have been proposed to simulate and explain TRCD spectra, including linear and non-linear response methods as well as non-adiabatic molecular dynamics. In this review, an overview on both experimental and theoretical advances in the TRCD field is provided, together with selected applications. A discussion on future theoretical developments for TRCD is also given.
Collapse
Affiliation(s)
- Marta Monti
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Leonardo Biancorosso
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Emanuele Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
2
|
Loreti A, Freixas VM, Avagliano D, Segatta F, Song H, Tretiak S, Mukamel S, Garavelli M, Govind N, Nenov A. WFOT: A Wave Function Overlap Tool between Single- and Multi-Reference Electronic Structure Methods for Spectroscopy Simulation. J Chem Theory Comput 2024; 20:4804-4819. [PMID: 38828948 DOI: 10.1021/acs.jctc.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
We report the development of a novel diagnostic tool, named wave function overlap tool (WFOT), designed to evaluate the overlap between wave functions computed at single-reference [i.e., time-dependent density functional theory or configuration interaction singles (CIS)] and multireference (i.e., CASSCF/CASPT2) electronic structure levels of theory. It relies on truncating the single- and multireference WFs to CIS-like expansions spanning the same configurational space and maximizing the molecular orbital overlap by means of a unitary transformation. To demonstrate the functionality of the tool, we calculate the transient spectrum of acetylacetone by evaluating excited state absorption signals with multireference quality on top of single-reference on-the-fly dynamics simulations. Semiautomatic spectra generation is facilitated by interfacing the tool with the COBRAMM package, which also allows one to use WFOT with several quantum chemistry codes such as Gaussian, NWChem, and OpenMolcas. Other exciting possibilities for the utilization of the code beyond the simulation of transient absorption spectroscopy are eventually discussed.
Collapse
Affiliation(s)
- Alessandro Loreti
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Via Piero Gobetti 85, Bologna 40129, Italy
| | - Victor Manuel Freixas
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Davide Avagliano
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Via Piero Gobetti 85, Bologna 40129, Italy
| | - Francesco Segatta
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Via Piero Gobetti 85, Bologna 40129, Italy
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Via Piero Gobetti 85, Bologna 40129, Italy
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Via Piero Gobetti 85, Bologna 40129, Italy
| |
Collapse
|
3
|
Cerezo J, Gao S, Armaroli N, Ingrosso F, Prampolini G, Santoro F, Ventura B, Pastore M. Non-Phenomenological Description of the Time-Resolved Emission in Solution with Quantum-Classical Vibronic Approaches-Application to Coumarin C153 in Methanol. Molecules 2023; 28:molecules28093910. [PMID: 37175320 PMCID: PMC10180259 DOI: 10.3390/molecules28093910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
We report a joint experimental and theoretical work on the steady-state spectroscopy and time-resolved emission of the coumarin C153 dye in methanol. The lowest energy excited state of this molecule is characterized by an intramolecular charge transfer thus leading to remarkable shifts of the time-resolved emission spectra, dictated by the methanol reorganization dynamics. We selected this system as a prototypical test case for the first application of a novel computational protocol aimed at the prediction of transient emission spectral shapes, including both vibronic and solvent effects, without applying any phenomenological broadening. It combines a recently developed quantum-classical approach, the adiabatic molecular dynamics generalized vertical Hessian method (Ad-MD|gVH), with nonequilibrium molecular dynamics simulations. For the steady-state spectra we show that the Ad-MD|gVH approach is able to reproduce quite accurately the spectral shapes and the Stokes shift, while a ∼0.15 eV error is found on the prediction of the solvent shift going from gas phase to methanol. The spectral shape of the time-resolved emission signals is, overall, well reproduced, although the simulated spectra are slightly too broad and asymmetric at low energies with respect to experiments. As far as the spectral shift is concerned, the calculated spectra from 4 ps to 100 ps are in excellent agreement with experiments, correctly predicting the end of the solvent reorganization after about 20 ps. On the other hand, before 4 ps solvent dynamics is predicted to be too fast in the simulations and, in the sub-ps timescale, the uncertainty due to the experimental time resolution (300 fs) makes the comparison less straightforward. Finally, analysis of the reorganization of the first solvation shell surrounding the excited solute, based on atomic radial distribution functions and orientational correlations, indicates a fast solvent response (≈100 fs) characterized by the strengthening of the carbonyl-methanol hydrogen bond interactions, followed by the solvent reorientation, occurring on the ps timescale, to maximize local dipolar interactions.
Collapse
Affiliation(s)
- Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Sheng Gao
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Nicola Armaroli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Francesca Ingrosso
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| | - Giacomo Prampolini
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Fabrizio Santoro
- Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Area di Ricerca di Pisa, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Barbara Ventura
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France
| |
Collapse
|
4
|
Segatta F, Ruiz DA, Aleotti F, Yaghoubi M, Mukamel S, Garavelli M, Santoro F, Nenov A. Nonlinear Molecular Electronic Spectroscopy via MCTDH Quantum Dynamics: From Exact to Approximate Expressions. J Chem Theory Comput 2023; 19:2075-2091. [PMID: 36961952 PMCID: PMC10100531 DOI: 10.1021/acs.jctc.2c01059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state S2 which exhibits a sub-100-fs nonadiabatic decay to a dark state S1. The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Daniel Aranda Ruiz
- ICMol, Universidad de Valencia, Catedrático José Beltrán Martínez, 2, 46980 Paterna, Spain
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Flavia Aleotti
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Martha Yaghoubi
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| |
Collapse
|
5
|
Nascimento DR, Govind N. Computational approaches for XANES, VtC-XES, and RIXS using linear-response time-dependent density functional theory based methods. Phys Chem Chem Phys 2022; 24:14680-14691. [PMID: 35699090 DOI: 10.1039/d2cp01132h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The emergence of state-of-the-art X-ray light sources has paved the way for novel spectroscopies that take advantage of their atomic specificity to shed light on fundamental physical, chemical, and biological processes both in the static and time domains. The success of these experiments hinges on the ability to interpret and predict core-level spectra, which has opened avenues for theory to play a key role. Over the last two decades, linear-response time-dependent density functional theory (LR-TDDFT), despite various theoretical challenges, has become a computationally attractive and versatile framework to study excited-state spectra including X-ray spectroscopies. In this context, we focus our discussion on LR-TDDFT approaches for the computation of X-ray Near-Edge Structure (XANES), Valence-to-Core X-ray Emission (VtC-XES), and Resonant Inelastic X-ray Scattering (RIXS) spectroscopies in molecular systems with an emphasis on Gaussian basis set implementations. We illustrate these approaches with applications and provide a brief outlook of possible new directions.
Collapse
Affiliation(s)
- Daniel R Nascimento
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA.
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| |
Collapse
|
6
|
Lei Y, Zheng Z, Vasquez L, Zhao J, Ma J, Ma H. Enhanced Electron Transfer and Spin Flip through Spin-Orbital Couplings in Organic/Inorganic Heterojunctions: A Nonadiabatic Surface Hopping Simulation. J Phys Chem Lett 2022; 13:4840-4848. [PMID: 35616399 DOI: 10.1021/acs.jpclett.2c01177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The circumstances of transferred electrons across organic/inorganic interfaces have attracted intensive interest because of the distinctive electronic structure properties of those two components. Leveraging ab initio nonadiabatic molecular dynamics methods in conjunction with spin dynamics induced by spin-orbital couplings (SOCs), this study reports two competitive channels during photoinduced dynamical processes in the prototypical ZnPc/monolayer MoS2 heterojunction. Interestingly, the electron-transfer and relaxation processes occur simultaneously because of the enhancement of electron-phonon couplings and expansion of dynamical pathways by SOCs, suggesting that the electron-transfer rate and relaxation processes can be tuned by SOCs, hence yielding the performance promotion of photovoltaic and photocatalytic devices. Additionally, approximately half of the transferred electrons flip their spin within 1.6 ps because of strong SOCs in MoS2, achieving great agreement with experimental measurements. This investigation provides instructive perspectives for designing novel devices and applications based on organic/inorganic heterojunctions, demonstrating the importance of spin dynamics simulations in exploring sophisticated photoinduced processes in materials.
Collapse
Affiliation(s)
- Yuli Lei
- Jiangsu Key Laboratory of Vehicle Emissions Control, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhenfa Zheng
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Luis Vasquez
- Jiangsu Key Laboratory of Vehicle Emissions Control, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Zhao
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing Ma
- Jiangsu Key Laboratory of Vehicle Emissions Control, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- Jiangsu Key Laboratory of Vehicle Emissions Control, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Nam Y, Montorsi F, Keefer D, Cavaletto SM, Lee JY, Nenov A, Garavelli M, Mukamel S. Time-Resolved Optical Pump-Resonant X-ray Probe Spectroscopy of 4-Thiouracil: A Simulation Study. J Chem Theory Comput 2022; 18:3075-3088. [PMID: 35476905 DOI: 10.1021/acs.jctc.2c00064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We theoretically monitor the photoinduced ππ* → nπ* internal conversion process in 4-thiouracil (4TU), triggered by an optical pump. The element-sensitive spectroscopic signatures are recorded by a resonant X-ray probe tuned to the sulfur, oxygen, or nitrogen K-edge. We employ high-level electronic structure methods optimized for core-excited electronic structure calculation combined with quantum nuclear wavepacket dynamics computed on two relevant nuclear modes, fully accounting for their quantum nature of nuclear motions. We critically discuss the capabilities and limitations of the resonant technique. For sulfur and nitrogen, we document a pre-edge spectral window free from ground-state background and rich with ππ* and nπ* absorption features. The lowest sulfur K-edge shows strong absorption for both ππ* and nπ*. In the lowest nitrogen K-edge window, we resolve a state-specific fingerprint of the ππ* and an approximate timing of the conical intersection via its depletion. A spectral signature of the nπ* transition, not accessible by UV-vis spectroscopy, is identified. The oxygen K-edge is not sensitive to molecular deformations and gives steady transient absorption features without spectral dynamics. The ππ*/nπ* coherence information is masked by more intense contributions from populations. Altogether, element-specific time-resolved resonant X-ray spectroscopy provides a detailed picture of the electronic excited-state dynamics and therefore a sensitive window into the photophysics of thiobases.
Collapse
Affiliation(s)
- Yeonsig Nam
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States.,Convergence Research Center for Energy and Environmental Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Francesco Montorsi
- Dipartimento di Chimica Industriale "Toso Montanari", Universita' degli Studi di Bologna, I-40136 Bologna, Italy
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Stefano M Cavaletto
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Jin Yong Lee
- Convergence Research Center for Energy and Environmental Sciences, Sungkyunkwan University, Suwon 16419, Korea.,Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Universita' degli Studi di Bologna, I-40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Universita' degli Studi di Bologna, I-40136 Bologna, Italy
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|