1
|
Sharma M, Sierka M. Optical Gaps of Ionic Materials from GW/BSE-in-DFT and CC2-in-DFT. J Chem Theory Comput 2024; 20:9592-9605. [PMID: 39417709 DOI: 10.1021/acs.jctc.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This work presents a density functional theory (DFT)-based embedding technique for the calculation of optical gaps in ionic solids. The approach partitions the supercell of the ionic solid and embeds a small molecule-like cluster in a periodic environment using a cluster-in-periodic embedding method. The environment is treated with DFT, and its influence on the cluster is captured by a DFT-based embedding potential. The optical gap is estimated as the lowest singlet excitation energy of the embedded cluster, obtained using a wave function theory method: second-order approximate coupled-cluster singles and doubles (CC2), and a many-body perturbation theory method: GW approximation combined with the Bethe-Salpeter equation (GW/BSE). The calculated excitation energies are benchmarked against the periodic GW/BSE values, equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) results, and experiments. Both CC2-in-DFT and GW/BSE-in-DFT deliver excitation energies that are in good agreement with experimental values for several ionic solids (MgO, CaO, LiF, NaF, KF, and LiCl) while incurring negligible computational costs. Notably, GW/BSE-in-DFT exhibits remarkable accuracy with a mean absolute error (MAE) of just 0.38 eV with respect to experiments, demonstrating the effectiveness of the embedding strategy. In addition, the versatility of the method is highlighted by investigating the optical gap of a 2D MgCl2 system and the excitation energy of an oxygen vacancy in MgO, with results in good agreement with reported values.
Collapse
Affiliation(s)
- Manas Sharma
- Otto Schott Institute of Materials Research, Friedrich Schiller Unversity Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Marek Sierka
- Otto Schott Institute of Materials Research, Friedrich Schiller Unversity Jena, Löbdergraben 32, 07743 Jena, Germany
| |
Collapse
|
2
|
Wang X, Gao S, Luo Y, Liu X, Tom R, Zhao K, Chang V, Marom N. Computational Discovery of Intermolecular Singlet Fission Materials Using Many-Body Perturbation Theory. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:7841-7864. [PMID: 38774154 PMCID: PMC11103713 DOI: 10.1021/acs.jpcc.4c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024]
Abstract
Intermolecular singlet fission (SF) is the conversion of a photogenerated singlet exciton into two triplet excitons residing on different molecules. SF has the potential to enhance the conversion efficiency of solar cells by harvesting two charge carriers from one high-energy photon, whose surplus energy would otherwise be lost to heat. The development of commercial SF-augmented modules is hindered by the limited selection of molecular crystals that exhibit intermolecular SF in the solid state. Computational exploration may accelerate the discovery of new SF materials. The GW approximation and Bethe-Salpeter equation (GW+BSE) within the framework of many-body perturbation theory is the current state-of-the-art method for calculating the excited-state properties of molecular crystals with periodic boundary conditions. In this Review, we discuss the usage of GW+BSE to assess candidate SF materials as well as its combination with low-cost physical or machine learned models in materials discovery workflows. We demonstrate three successful strategies for the discovery of new SF materials: (i) functionalization of known materials to tune their properties, (ii) finding potential polymorphs with improved crystal packing, and (iii) exploring new classes of materials. In addition, three new candidate SF materials are proposed here, which have not been published previously.
Collapse
Affiliation(s)
- Xiaopeng Wang
- School
of Foundational Education, University of
Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao
Institute for Theoretical and Computational Sciences, Institute of
Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Siyu Gao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yiqun Luo
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xingyu Liu
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rithwik Tom
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kaiji Zhao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Vincent Chang
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Noa Marom
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Zhou H, Kincaid B, Wang G, Annaberdiyev A, Ganesh P, Mitas L. A new generation of effective core potentials: Selected lanthanides and heavy elements. J Chem Phys 2024; 160:084302. [PMID: 38391016 DOI: 10.1063/5.0180057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/05/2023] [Indexed: 02/24/2024] Open
Abstract
We construct correlation-consistent effective core potentials (ccECPs) for a selected set of heavy atoms and f elements that are currently of significant interest in materials and chemical applications, including Y, Zr, Nb, Rh, Ta, Re, Pt, Gd, and Tb. As is customary, ccECPs consist of spin-orbit (SO) averaged relativistic effective potential (AREP) and effective SO terms. For the AREP part, our constructions are carried out within a relativistic coupled-cluster framework while also taking into account objective function one-particle characteristics for improved convergence in optimizations. The transferability is adjusted using binding curves of hydride and oxide molecules. We address the difficulties encountered with f elements, such as the presence of large cores and multiple near-degeneracies of excited levels. For these elements, we construct ccECPs with core-valence partitioning that includes 4f subshell in the valence space. The developed ccECPs achieve an excellent balance between accuracy, size of the valence space, and transferability and are also suitable to be used in plane wave codes with reasonable energy cutoffs.
Collapse
Affiliation(s)
- Haihan Zhou
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Benjamin Kincaid
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Guangming Wang
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Abdulgani Annaberdiyev
- Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Panchapakesan Ganesh
- Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Lubos Mitas
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| |
Collapse
|
4
|
Vo EA, Wang X, Berkelbach TC. Performance of periodic EOM-CCSD for bandgaps of inorganic semiconductors and insulators. J Chem Phys 2024; 160:044106. [PMID: 38265084 DOI: 10.1063/5.0187856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
We calculate bandgaps of 12 inorganic semiconductors and insulators composed of atoms from the first three rows of the Periodic Table using periodic equation-of-motion coupled-cluster theory with single and double excitations (EOM-CCSD). Our calculations are performed with atom-centered triple-zeta basis sets and up to 64 k-points in the Brillouin zone. We analyze the convergence behavior with respect to the number of orbitals and number of k-points sampled using composite corrections and extrapolations to produce our final values. When accounting for electron-phonon corrections to experimental bandgaps, we find that EOM-CCSD has a mean signed error of -0.12 eV and a mean absolute error of 0.42 eV; the largest outliers are C (error of -0.93 eV), BP (-1.00 eV), and LiH (+0.78 eV). Surprisingly, we find that the more affordable partitioned EOM-MP2 theory performs as well as EOM-CCSD.
Collapse
Affiliation(s)
- Ethan A Vo
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Xiao Wang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | |
Collapse
|
5
|
Zhang C, Zheng X, Liu J, Asthana A, Cheng L. Analytic gradients for relativistic exact-two-component equation-of-motion coupled-cluster singles and doubles method. J Chem Phys 2023; 159:244113. [PMID: 38153147 DOI: 10.1063/5.0175041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023] Open
Abstract
A first implementation of analytic gradients for spinor-based relativistic equation-of-motion coupled-cluster singles and doubles method using an exact two-component Hamiltonian augmented with atomic mean-field spin-orbit integrals is reported. To demonstrate its applicability, we present calculations of equilibrium structures and harmonic vibrational frequencies for the electronic ground and excited states of the radium mono-amide molecule (RaNH2) and the radium mono-methoxide molecule (RaOCH3). Spin-orbit coupling is shown to quench Jahn-Teller effects in the first excited state of RaOCH3, resulting in a C3v equilibrium structure. The calculations also show that the radium atoms in these molecules serve as efficient optical cycling centers.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xuechen Zheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Junzi Liu
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Ayush Asthana
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
6
|
Gururangan K, Piecuch P. Converging high-level coupled-cluster energetics via adaptive selection of excitation manifolds driven by moment expansions. J Chem Phys 2023; 159:084108. [PMID: 37610021 DOI: 10.1063/5.0162873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
A novel approach to rapidly converging high-level coupled-cluster (CC) energetics in an automated fashion is proposed. The key idea is an adaptive selection of excitation manifolds defining higher--than--two-body components of the cluster operator inspired by CC(P;Q) moment expansions. The usefulness of the resulting methodology is illustrated by molecular examples where the goal is to recover the electronic energies obtained using the CC method with a full treatment of singly, doubly, and triply excited clusters (CCSDT) when the noniterative triples corrections to CCSD fail.
Collapse
Affiliation(s)
- Karthik Gururangan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
7
|
Bintrim SJ, Berkelbach TC, Ye HZ. Integral-Direct Hartree-Fock and Møller-Plesset Perturbation Theory for Periodic Systems with Density Fitting: Application to the Benzene Crystal. J Chem Theory Comput 2022; 18:5374-5381. [PMID: 35969856 DOI: 10.1021/acs.jctc.2c00640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an algorithm and implementation of integral-direct, density-fitted Hartree-Fock (HF) and second-order Møller-Plesset perturbation theory (MP2) for periodic systems. The new code eliminates the formerly prohibitive storage requirements and allows us to study systems 1 order of magnitude larger than before at the periodic MP2 level. We demonstrate the significance of the development by studying the benzene crystal in both the thermodynamic limit and the complete basis set limit, for which we predict an MP2 cohesive energy of -72.8 kJ/mol, which is about 10-15 kJ/mol larger in magnitude than all previously reported MP2 calculations. Compared to the best theoretical estimate from literature, several modified MP2 models approach chemical accuracy in the predicted cohesive energy of the benzene crystal and hence may be promising cost-effective choices for future applications on molecular crystals.
Collapse
Affiliation(s)
- Sylvia J Bintrim
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
8
|
Cerdán L, Roca-Sanjuán D. Reconstruction of Nuclear Ensemble Approach Electronic Spectra Using Probabilistic Machine Learning. J Chem Theory Comput 2022; 18:3052-3064. [PMID: 35481363 PMCID: PMC9097286 DOI: 10.1021/acs.jctc.2c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Indexed: 11/29/2022]
Abstract
The theoretical prediction of molecular electronic spectra by means of quantum mechanical (QM) computations is fundamental to gain a deep insight into many photophysical and photochemical processes. A computational strategy that is attracting significant attention is the so-called Nuclear Ensemble Approach (NEA), that relies on generating a representative ensemble of nuclear geometries around the equilibrium structure and computing the vertical excitation energies (ΔE) and oscillator strengths (f) and phenomenologically broadening each transition with a line-shaped function with empirical full-width δ. Frequently, the choice of δ is carried out by visually finding the trade-off between artificial vibronic features (small δ) and over-smoothing of electronic signatures (large δ). Nevertheless, this approach is not satisfactory, as it relies on a subjective perception and may lead to spectral inaccuracies overall when the number of sampled configurations is limited due to an excessive computational burden (high-level QM methods, complex systems, solvent effects, etc.). In this work, we have developed and tested a new approach to reconstruct NEA spectra, dubbed GMM-NEA, based on the use of Gaussian Mixture Models (GMMs), a probabilistic machine learning algorithm, that circumvents the phenomenological broadening assumption and, in turn, the use of δ altogether. We show that GMM-NEA systematically outperforms other data-driven models to automatically select δ overall for small datasets. In addition, we report the use of an algorithm to detect anomalous QM computations (outliers) that can affect the overall shape and uncertainty of the NEA spectra. Finally, we apply GMM-NEA to predict the photolysis rate for HgBrOOH, a compound involved in Earth's atmospheric chemistry.
Collapse
Affiliation(s)
- Luis Cerdán
- Institut de Ciència Molecular, Universitat de València, València 46071, Spain
| | - Daniel Roca-Sanjuán
- Institut de Ciència Molecular, Universitat de València, València 46071, Spain
| |
Collapse
|
9
|
Weiler L, Mihm T, Shepherd JJ. Machine learning for a finite size correction in periodic coupled cluster theory calculations. J Chem Phys 2022; 156:204109. [DOI: 10.1063/5.0086580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce a straightforward Gaussian process regression (GPR) model for the transition structure factor of metal periodic coupled cluster singles and doubles (CCSD) calculations. This is inspired by the method introduced by Liao and Gr\"uneis for interpolating over the transition structure factor to obtain a finite size correction for CCSD [J. Chem. Phys. 145, 141102 (2016)], and by our own prior work using the transition structure factor to efficiently converge CCSD for metals to the thermodynamic limit [Nat. Comput. Sci. 1, 801 (2021)]. In our CCSD-FS-GPR method to correct for finite size errors, we fit the structure factor to a 1D function in the momentum transfer, $G$.We then integrate over this function by projecting it onto a k-point mesh to obtain comparisons with extrapolated results. Results are shown for lithium, sodium, and the uniform electron gas.
Collapse
Affiliation(s)
| | - Tina Mihm
- Chemistry, University of Iowa, United States of America
| | | |
Collapse
|
10
|
Liu J, Matthews DA, Cheng L. Quadratic Unitary Coupled-Cluster Singles and Doubles Scheme: Efficient Implementation, Benchmark Study, and Formulation of an Extended Version. J Chem Theory Comput 2022; 18:2281-2291. [PMID: 35312299 DOI: 10.1021/acs.jctc.1c01210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient implementation of the quadratic unitary coupled-cluster singles and doubles (qUCCSD) scheme for calculations of electronic ground and excited states using an unrestricted molecular spin-orbital formulation and an efficient tensor contraction library is reported. The accuracy of the qUCCSD scheme and the efficiency of the present implementation are demonstrated using extensive benchmark calculations of excitation energies and an application to S0 → S1 vertical excitation energies for cis- and trans-4a,4b-dihydrotriphenylene. The qUCCSD scheme has been shown to provide improved excitation energies compared with the UCC3 scheme formulated based on perturbation theory. A UCC truncation scheme that can provide excitation energies correct through the fourth order is also presented to further improve the accuracy of the qUCCSD scheme.
Collapse
Affiliation(s)
- Junzi Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Devin A Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
Ye HZ, Berkelbach TC. Correlation-Consistent Gaussian Basis Sets for Solids Made Simple. J Chem Theory Comput 2022; 18:1595-1606. [PMID: 35192359 DOI: 10.1021/acs.jctc.1c01245] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rapidly growing interest in simulating condensed-phase materials using quantum chemistry methods calls for a library of high-quality Gaussian basis sets suitable for periodic calculations. Unfortunately, most standard Gaussian basis sets commonly used in molecular simulation show significant linear dependencies when used in close-packed solids, leading to severe numerical issues that hamper the convergence to the complete basis set (CBS) limit, especially in correlated calculations. In this work, we revisit Dunning's strategy for construction of correlation-consistent basis sets and examine the relationship between accuracy and numerical stability in periodic settings. We find that limiting the number of primitive functions avoids the appearance of problematic small exponents while still providing smooth convergence to the CBS limit. As an example, we generate double-, triple-, and quadruple-ζ correlation-consistent Gaussian basis sets for periodic calculations with Goedecker-Teter-Hutter (GTH) pseudopotentials. Our basis sets cover the main-group elements from the first three rows of the periodic table. Especially for atoms on the left side of the periodic table, our basis sets are less diffuse than those used in molecular calculations. We verify the fast and reliable convergence to the CBS limit in both Hartree-Fock and post-Hartree-Fock (MP2) calculations, using a diverse test set of 19 semiconductors and insulators.
Collapse
Affiliation(s)
- Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| |
Collapse
|