1
|
Chan B, Ho J. Simple Composite Approach to Efficiently Estimate Basis Set Limit CCSD(T) Harmonic Frequencies and Reaction Thermochemistry. J Phys Chem A 2023; 127:10026-10031. [PMID: 37970798 DOI: 10.1021/acs.jpca.3c06027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
We introduce a simple strategy that combines the G3(MP2) composite method and explicitly correlated coupled cluster CCSD(T)-F12 method to efficiently estimate complete basis set CCSD(T) molecular geometries and harmonic vibrational frequencies at the cost of a double-ζ basis set calculation. Based on a large test set of 61 neutral, ionic, and open-shell molecules, and additionally 31 molecules in the HFREQ2014 data set, we demonstrate that this composite strategy has an average accuracy of 2 cm-1 or better relative to complete basis set CCSD(T) values. Using this approach, we estimated 696 CCSD(T)/CBS reaction energies of small to medium-sized systems containing up to 6 heavy atoms and confirmed existing approximations that use small basis set density functional theory methods [e.g., M06-2X/6-31+G(d)] to calculate thermal contributions to reaction enthalpies and Gibbs free energies that are accurate to within 0.2 kcal mol-1 on average.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Junming Ho
- School of Chemistry, The University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
2
|
Broderick DR, Herbert JM. Scalable generalized screening for high-order terms in the many-body expansion: Algorithm, open-source implementation, and demonstration. J Chem Phys 2023; 159:174801. [PMID: 37921253 DOI: 10.1063/5.0174293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
The many-body expansion lies at the heart of numerous fragment-based methods that are intended to sidestep the nonlinear scaling of ab initio quantum chemistry, making electronic structure calculations feasible in large systems. In principle, inclusion of higher-order n-body terms ought to improve the accuracy in a controllable way, but unfavorable combinatorics often defeats this in practice and applications with n ≥ 4 are rare. Here, we outline an algorithm to overcome this combinatorial bottleneck, based on a bottom-up approach to energy-based screening. This is implemented within a new open-source software application ("Fragme∩t"), which is integrated with a lightweight semi-empirical method that is used to cull subsystems, attenuating the combinatorial growth of higher-order terms in the graph that is used to manage the calculations. This facilitates applications of unprecedented size, and we report four-body calculations in (H2O)64 clusters that afford relative energies within 0.1 kcal/mol/monomer of the supersystem result using less than 10% of the unique subsystems. We also report n-body calculations in (H2O)20 clusters up to n = 8, at which point the expansion terminates naturally due to screening. These are the largest n-body calculations reported to date using ab initio electronic structure theory, and they confirm that high-order n-body terms are mostly artifacts of basis-set superposition error.
Collapse
Affiliation(s)
- Dustin R Broderick
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
3
|
Heindel JP, Herman KM, Xantheas SS. Many-Body Effects in Aqueous Systems: Synergies Between Interaction Analysis Techniques and Force Field Development. Annu Rev Phys Chem 2023; 74:337-360. [PMID: 37093659 DOI: 10.1146/annurev-physchem-062422-023532] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Interaction analysis techniques, including the many-body expansion (MBE), symmetry-adapted perturbation theory, and energy decomposition analysis, allow for an intuitive understanding of complex molecular interactions. We review these methods by first providing a historical context for the study of many-body interactions and discussing how nonadditivities emerge from Hamiltonians containing strictly pairwise-additive interactions. We then elaborate on the synergy between these interaction analysis techniques and the development of advanced force fields aimed at accurately reproducing the Born-Oppenheimer potential energy surface. In particular, we focus on ab initio-based force fields that aim to explicitly reproduce many-body terms and are fitted to high-level electronic structure results. These force fields generally incorporate many-body effects through (a) parameterization of distributed multipoles, (b) explicit fitting of the MBE, (c) inclusion of many-atom features in a neural network, and (d) coarse-graining of many-body terms into an effective two-body term. We also discuss the emerging use of the MBE to improve the accuracy and speed of ab initio molecular dynamics.
Collapse
Affiliation(s)
- Joseph P Heindel
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Kristina M Herman
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Sotiris S Xantheas
- Department of Chemistry, University of Washington, Seattle, Washington, USA
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, Richland, Washington, USA; ,
| |
Collapse
|
4
|
Li XL, Li CM, Zhu JY, Zhou Z, Hao Q, Wang CS. A scheme for rapid evaluation of the intermolecular three-body polarization effect in water clusters. J Comput Chem 2023; 44:677-686. [PMID: 36408852 DOI: 10.1002/jcc.27032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Abstract
The ability to accurately and rapidly evaluate the intermolecular many-body polarization effect of the water system is very important for computer simulations of biomolecule in aqueous. In this paper, a scheme is proposed based on the polarizable dipole-dipole interaction model and used to rapidly estimate the intermolecular many-body polarization effect in water clusters. We use a bond-dipole-based polarization function to evaluate the polarization energy. We regard two OH bonds of a water molecule as two bond-dipoles and set the permanent OH bond-dipole moment of a water molecule to be 1.51 Debye. We estimate the induced OH bond-dipole moment via a simple formula in which only one correction factor is needed. This scheme is then applied to tens of water clusters to calculate the three- and four-body interaction energies. The three-body interaction energies of 93 water clusters produced by our scheme are compared with those produced by the counterpoise-corrected CCSD(T)/aug-cc-pVDZ, MP2/aug-cc-pVDZ, M06-2X/jul-cc-pVTZ methods, by the AMOEBApro13, iAMOEBA, AMOEBA+, AMOEBA+(CF) methods, and by the MB-pol method. The four-body interaction energies of 47 water clusters yielded by our scheme are compared with those yielded by the counterpoise-corrected MP2/aug-cc-pVDZ and M06-2X/ jul-cc-pVTZ methods, by the AMOEBApro13, AMOEBA+, AMOEBA+(CF) methods, and by the MB-pol method. The comparison results show that the scheme proposed in this paper can reproduce the counterpoise-corrected CCSD(T)/aug-cc-pVDZ three-body interaction energies and reproduce the counterpoise-corrected MP2/aug-cc-pVDZ four-body interaction energies both accurately and efficiently. We anticipate the scheme proposed here can be useful for computer simulations of liquid water and aqueous solutions.
Collapse
Affiliation(s)
- Xiao-Lei Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Chao-Ming Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Jia-Yi Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Zhan Zhou
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Qiang Hao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| | - Chang-Sheng Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, People's Republic of China
| |
Collapse
|
5
|
Herman KM, Xantheas SS. A Formulation of the Many-Body Expansion (MBE) for Periodic Systems: Application to Several Ice Phases. J Phys Chem Lett 2023; 14:989-999. [PMID: 36692897 DOI: 10.1021/acs.jpclett.2c03822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We introduce a new formulation of the many-body expansion (MBE) for periodic systems and apply it to 7 ice polymorphs (Ih, II, VIII, IX, XIII, XIV, and XV). This new formulation is built via a hierarchical procedure that connects gas-phase clusters that mimic unit cells over finite supercells to infinite solids. For periodic systems, the method is validated by showing that the lattice energies computed up to the 4-body in the MBE reproduce the lattice energies obtained using periodic boundary conditions with an Ewald summation for the 7 ice polymorphs. This development makes it possible to quantify, for the first time, the many-body contributions to the lattice energy of various ice polymorphs, which vary significantly among the 7 ice phases, amounting to between 7 and 24% of the total lattice energies. This development opens the door for obtaining insights into solid-state properties, while leveraging the computational benefits of the MBE.
Collapse
Affiliation(s)
- Kristina M Herman
- Department of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Sotiris S Xantheas
- Department of Chemistry, University of Washington, Seattle, Washington98195, United States
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN J7-10, Richland, Washington99352, United States
| |
Collapse
|
6
|
Mato J, Tzeli D, Xantheas SS. The Many-Body Expansion for Metals I: The Alkaline Earth metals Be, Mg, and Ca. J Chem Phys 2022; 157:084313. [DOI: 10.1063/5.0094598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We examine the Many-Body Expansion (MBE) for alkaline earth metal clusters, Be n, Mg n, Ca n ( n = 4, 5, 6) at the MP2, CCSD(T), MRPT2, and MRCI levels of theory. The magnitude of each term in the MBE is evaluated for several geometrical configurations. We find that the behavior of the MBE for these clusters depends strongly on the geometrical arrangement, and, to a lesser extent, on the level of theory used. Another factor that affects the MBE is the in situ (ground or excited) electronic state of the individual atoms in the cluster. For most geometries, the three-body term is the largest, followed by a steady decrease in absolute energy for subsequent terms. Though these systems exhibit non-negligible multi-reference effects, there was little qualitative difference in the MBE expansion when employing single vs. multi-reference methods. Useful insights into the connectivity and stability of these clusters have been drawn from the respective potential energy surfaces and Quasi-Atomic orbitals for the various dimers, trimers, and tetramers. Through these analyses we investigate the similarities and differences in the binding energies of different size clusters for these metals.
Collapse
Affiliation(s)
- Joani Mato
- Chemical Physics, Pacific Northwest National Laboratory, United States of America
| | - Demeter Tzeli
- Department of Chemistry, National and Kapodistrian University of Athens Department of Chemistry, Greece
| | | |
Collapse
|
7
|
Tzeli D, Xantheas SS. Breaking covalent bonds in the context of the many-body expansion (MBE). I. The purported "first row anomaly" in XH n (X = C, Si, Ge, Sn; n = 1-4). J Chem Phys 2022; 156:244303. [PMID: 35778077 DOI: 10.1063/5.0095329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a new, novel implementation of the Many-Body Expansion (MBE) to account for the breaking of covalent bonds, thus extending the range of applications from its previous popular usage in the breaking of hydrogen bonds in clusters to molecules. A central concept of the new implementation is the in situ atomic electronic state of an atom in a molecule that casts the one-body term as the energy required to promote it to that state from its ground state. The rest of the terms correspond to the individual diatomic, triatomic, etc., fragments. Its application to the atomization energies of the XHn series, X = C, Si, Ge, Sn and n = 1-4, suggests that the (negative, stabilizing) 2-B is by far the largest term in the MBE with the higher order terms oscillating between positive and negative values and decreasing dramatically in size with increasing rank of the expansion. The analysis offers an alternative explanation for the purported "first row anomaly" in the incremental Hn-1X-H bond energies seen when these energies are evaluated with respect to the lowest energy among the states of the XHn molecules. Due to the "flipping" of the ground/first excited state between CH2 (3B1 ground state, 1A1 first excited state) and XH2, X = Si, Ge, Sn (1A1 ground state, 3B1 first excited state), the overall picture does not exhibit a "first row anomaly" when the incremental bond energies are evaluated with respect to the molecular states having the same in situ atomic states.
Collapse
Affiliation(s)
- Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15784, Greece
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Mississippi K1-83, Richland, Washington 99352, USA
| |
Collapse
|
8
|
Herman KM, Stone AJ, Xantheas SS. A Classical Model for 3-body Interactions in Aqueous Ionic Systems. J Chem Phys 2022; 157:024101. [DOI: 10.1063/5.0095739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a classical electrostatic induction model to evaluate the 3-body Ion-Water-Water (I-W-W) and (W-W-W) interactions in aqueous ionic systems. The monatomic ions were described by a point charge and a dipole-dipole polarizability, while for the polyatomic ions distributed multipoles up to hexadecapole and distributed polarizabilities up to quadrupole-quadrupole were used. The accuracy of the classical model is benchmarked against an accurate dataset of 936 (I-W-W) and 2,184 (W-W-W) 3-body terms for 13 different monatomic and polyatomic cation and anion systems. The classical model shows excellent agreement with the reference MP2 and CCSD(T) 3-body energies. The Root-Mean-Square-Errors (RMSEs) for monatomic cations, monatomic anions, and polyatomic ions were 0.29 kcal/mol, 0.25 kcal/mol, and 0.12 kcal/mol, respectively. The corresponding RMSE for 1,744 CCSD(T)/aVTZ 3-body (W-W-W) energies, used to train MB-pol, was 0.12 kcal/mol. The accuracy of the classical model demonstrates that the 3-body term for aqueous ionic systems can be accurately modeled classically, without the need to fit to tens of thousands of high-level ab initio calculations. This approach provides a fast but accurate and efficient path towards modeling the 3-body effect in aqueous ionic systems that is fully transferable across systems with different ions.
Collapse
Affiliation(s)
- Kristina M. Herman
- University of Washington Department of Chemistry, United States of America
| | - Anthony J. Stone
- University Chemical Laboratory, University of Cambridge Department of Chemistry, United Kingdom
| | | |
Collapse
|