1
|
Yuwono SH, Li RR, Zhang T, Surjuse KA, Valeev EF, Li X, Eugene DePrince A. Relativistic Coupled Cluster with Completely Renormalized and Perturbative Triples Corrections. J Phys Chem A 2024. [PMID: 39074123 DOI: 10.1021/acs.jpca.4c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
We have implemented noniterative triples corrections to the energy from coupled-cluster with single and double excitations (CCSD) within the 1-electron exact two-component (1eX2C) relativistic framework. The effectiveness of both the CCSD(T) and the completely renormalized (CR) CC(2,3) approaches are demonstrated by performing all-electron computations of the potential energy curves and spectroscopic constants of copper, silver, and gold dimers in their ground electronic states. Spin-orbit coupling effects captured via the 1eX2C framework are shown to be crucial for recovering the correct shape of the potential energy curves, and the correlation effects due to triples in these systems change the dissociation energies by about 0.1-0.2 eV or about 4-7%. We also demonstrate that relativistic effects and basis set size and contraction scheme are significantly more important in Au2 than in Ag2 or Cu2.
Collapse
Affiliation(s)
- Stephen H Yuwono
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Run R Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
2
|
Shumilov KD, Jenkins AJ, La Pierre HS, Vlaisavljevich B, Li X. Overdestabilization vs Overstabilization in the Theoretical Analysis of f-Orbital Covalency. J Am Chem Soc 2024; 146:12030-12039. [PMID: 38648269 DOI: 10.1021/jacs.4c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The complex nature of the f-orbital electronic structures and their interaction with the chemical environment pose significant computational challenges. Advanced computational techniques that variationally include scalar relativities and spin-orbit coupling directly at the molecular orbital level have been developed to address this complexity. Among these, variational relativistic multiconfigurational multireference methods stand out for their high accuracy and systematic improvement in studies of f-block complexes. Additionally, these advanced methods offer the potential for calibrating low-scaling electronic structure methods such as density functional theory. However, studies on the Cl K-edge X-ray absorption spectra of the [Ce(III)Cl6]3- and [Ce(IV)Cl6]2- complexes show that time-dependent density functional theory with approximate exchange-correlation kernels can lead to inaccuracies, resulting in an overstabilization of 4f orbitals and incorrect assessments of covalency. In contrast, approaches utilizing small active space wave function methods may understate the stability of these orbitals. The results herein demonstrate the need for large active space, multireference, and variational relativistic methods in studying f-block complexes.
Collapse
Affiliation(s)
- Kirill D Shumilov
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Henry S La Pierre
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Nuclear and Radiological Engineering and Medical Physics Program, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Xu X, Jiang H, Wu K. Uranyl Affinity between Uranyl Cation and Different Kinds of Monovalent Anions: Density Functional Theory and Quantitative Structure-Property Relationship Model. J Phys Chem A 2024; 128:2960-2970. [PMID: 38576211 DOI: 10.1021/acs.jpca.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
In order to design effective extractants for uranium extraction from seawater, it is imperative to acquire a more comprehensive understanding of the bonding properties between the uranyl cation (UO22+) and various ligands. Therefore, we employed density functional theory to investigate the complexation reactions of UO22+ with 29 different monovalent anions (L-1), exploring both mono- and bidentate coordination. We proposed a novel concept called "uranyl affinity" (Eua) to facilitate the establishment of a standardized scale for assessing the ease or difficulty of coordination bond formation between UO22+ and diverse ligands. Furthermore, we conducted an in-depth investigation into the underlying mechanisms involved. During the process of uranyl complex [(UO2L)+] formation, lone pair electrons from the coordinating atom in L- are transferred to either the lowest unoccupied molecular degenerate orbitals 1ϕu or 1δu of the uranyl ion, which originate from the uranium atom's 5f unoccupied orbitals. In light of discussion concerning the mechanisms of coordination bond formation, quantitative structure-property relationship analyses were conducted to investigate the correlation between Eua and various structural descriptors associated with the 29 ligands under investigation. This analysis revealed distinct patterns in Eua values while identifying key influencing factors among the different ligands.
Collapse
Affiliation(s)
- Xiang Xu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiyan Jiang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Kechen Wu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
4
|
Dergachev VD, Nakritskaia DD, Varganov SA. Strong Relativistic Effects in Lanthanide-Based Single-Molecule Magnets. J Phys Chem Lett 2022; 13:6749-6754. [PMID: 35852301 DOI: 10.1021/acs.jpclett.2c01627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lanthanide-based single-molecule magnets (SMMs) are promising building blocks for quantum memory and spintronic devices. Designing lanthanide-based SMMs with long spin relaxation time requires a detailed understanding of their electronic structure, including the crucial role of the spin-orbit coupling (SOC). While traditional calculations of SOC using the perturbation theory applied to a solution of the nonrelativistic Schrödinger equation are valid for light atoms, this approach is questionable for systems containing heavy elements such as lanthanides. We investigate the accuracy of the perturbation estimates of SOC by variationally solving the Dirac equation for the [DyO]+ molecule, a prototype of a lanthanide-based SMM. We show that the energy splittings between the M J states involved in spin relaxation depend on the interplay between strong SOC and dynamic electron correlation. We demonstrate that this interplay affects the resonances between the spin and vibrational transitions and, therefore, the spin relaxation time.
Collapse
Affiliation(s)
- Vsevolod D Dergachev
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Daria D Nakritskaia
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Sergey A Varganov
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| |
Collapse
|
5
|
Horne GP, Rotermund BM, Grimes TS, Sperling JM, Meeker DS, Zalupski PR, Beck N, Huffman ZK, Martinez DG, Beshay A, Peterman DR, Layne BH, Johnson J, Cook AR, Albrecht-Schönzart TE, Mezyk SP. Transient Radiation-Induced Berkelium(III) and Californium(III) Redox Chemistry in Aqueous Solution. Inorg Chem 2022; 61:10822-10832. [PMID: 35776877 DOI: 10.1021/acs.inorgchem.2c01106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the significant impact of radiation-induced redox reactions on the accessibility and lifetimes of actinide oxidation states, fundamental knowledge of aqueous actinide metal ion radiation chemistry is limited, especially for the late actinides. A quantitative understanding of these intrinsic radiation-induced processes is essential for investigating the fundamental properties of these actinides. We present here a picosecond electron pulse reaction kinetics study into the radiation-induced redox chemistry of trivalent berkelium (Bk(III)) and californium (Cf(III)) ions in acidic aqueous solutions at ambient temperature. New and first-of-a-kind, second-order rate coefficients are reported for the transient radical-induced reduction of Bk(III) and Cf(III) by the hydrated electron (eaq-) and hydrogen atom (H•), demonstrating a significant reactivity (up to 1011 M-1 s-1) indicative of a preference of these metals to adopt divalent states. Additionally, we report the first-ever second-order rate coefficients for the transient radical-induced oxidation of these elements by a reaction with hydroxyl (•OH) and nitrate (NO3•) radicals, which also exhibited fast reactivity (ca. 108 M-1 s-1). Transient Cf(II), Cf(IV), and Bk(IV) absorption spectra are also reported. Overall, the presented data highlight the existence of rich, complex, intrinsic late actinide radiation-induced redox chemistry that has the potential to influence the findings of other areas of actinide science.
Collapse
Affiliation(s)
- Gregory P Horne
- Center for Radiation Chemistry Research, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415, United States
| | - Brian M Rotermund
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Travis S Grimes
- Center for Radiation Chemistry Research, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415, United States
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - David S Meeker
- Center for Radiation Chemistry Research, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415, United States.,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Peter R Zalupski
- Center for Radiation Chemistry Research, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415, United States
| | - Nicholas Beck
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Zachary K Huffman
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Daniela Gomez Martinez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Andrew Beshay
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840-9507, United States
| | - Dean R Peterman
- Center for Radiation Chemistry Research, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415, United States
| | - Bobby H Layne
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jason Johnson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Andrew R Cook
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Stephen P Mezyk
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840-9507, United States
| |
Collapse
|