1
|
Jeong S, Huang C, Levell Z, Skalla RX, Hong W, Escorcia NJ, Losovyj Y, Zhu B, Butrum-Griffith AN, Liu Y, Li CW, Reifsnyder Hickey D, Liu Y, Ye X. Facet-Defined Dilute Metal Alloy Nanorods for Efficient Electroreduction of CO 2 to n-Propanol. J Am Chem Soc 2024; 146:4508-4520. [PMID: 38320122 DOI: 10.1021/jacs.3c11013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Electroreduction of CO2 into liquid fuels is a compelling strategy for storing intermittent renewable energy. Here, we introduce a family of facet-defined dilute copper alloy nanocrystals as catalysts to improve the electrosynthesis of n-propanol from CO2 and H2O. We show that substituting a dilute amount of weak-CO-binding metals into the Cu(100) surface improves CO2-to-n-propanol activity and selectivity by modifying the electronic structure of catalysts to facilitate C1-C2 coupling while preserving the (100)-like 4-fold Cu ensembles which favor C1-C1 coupling. With the Au0.02Cu0.98 champion catalyst, we achieve an n-propanol Faradaic efficiency of 18.2 ± 0.3% at a low potential of -0.41 V versus the reversible hydrogen electrode and a peak production rate of 16.6 mA·cm-2. This study demonstrates that shape-controlled dilute-metal-alloy nanocrystals represent a new frontier in electrocatalyst design, and precise control of the host and minority metal distributions is crucial for elucidating structure-composition-property relationships and attaining superior catalytic performance.
Collapse
Affiliation(s)
- Soojin Jeong
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chuanliang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Zachary Levell
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rebecca X Skalla
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Wei Hong
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Nicole J Escorcia
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Yaroslav Losovyj
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Baixu Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Alex N Butrum-Griffith
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yang Liu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Christina W Li
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Danielle Reifsnyder Hickey
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yuanyue Liu
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xingchen Ye
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
2
|
Tchakoua T, Jansen T, van Nies Y, van den Elshout RFA, van Boxmeer BAB, Poort SP, Ackermans MG, Beltrão GS, Hildebrand SA, Beekman SEJ, van der Drift T, Kaart S, Šantić A, Spuijbroek EE, Gerrits N, Somers MF, Kroes GJ. Constructing Mixed Density Functionals for Describing Dissociative Chemisorption on Metal Surfaces: Basic Principles. J Phys Chem A 2023; 127:10481-10498. [PMID: 38051300 PMCID: PMC10726370 DOI: 10.1021/acs.jpca.3c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The production of a majority of chemicals involves heterogeneous catalysis at some stage, and the rates of many heterogeneously catalyzed processes are governed by transition states for dissociative chemisorption on metals. Accurate values of barrier heights for dissociative chemisorption on metals are therefore important to benchmarking electronic structure theory in general and density functionals in particular. Such accurate barriers can be obtained using the semiempirical specific reaction parameter (SRP) approach to density functional theory. However, this approach has thus far been rather ad hoc in its choice of the generic expression of the SRP functional to be used, and there is a need for better heuristic approaches to determining the mixing parameters contained in such expressions. Here we address these two issues. We investigate the ability of several mixed, parametrized density functional expressions combining exchange at the generalized gradient approximation (GGA) level with either GGA or nonlocal correlation to reproduce barrier heights for dissociative chemisorption on metal surfaces. For this, seven expressions of such mixed density functionals are tested on a database consisting of results for 16 systems taken from a recently published slightly larger database called SBH17. Three expressions are derived that exhibit high tunability and use correlation functionals that are either of the PBE GGA form or of one of two limiting nonlocal forms also describing the attractive van der Waals interaction in an approximate way. We also find that, for mixed density functionals incorporating GGA correlation, the optimum fraction of repulsive RPBE GGA exchange obtained with a specific GGA density functional is correlated with the charge-transfer parameter, which is equal to the difference in the work function of the metal surface and the electron affinity of the molecule. However, the correlation is generally not large and not large enough to obtain accurate guesses of the mixing parameter for the systems considered, suggesting that it does not give rise to a very effective search strategy.
Collapse
Affiliation(s)
- Théophile Tchakoua
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Tim Jansen
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Youri van Nies
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | - Bart A B van Boxmeer
- Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Saskia P Poort
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Michelle G Ackermans
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Gabriel Spiller Beltrão
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Stefan A Hildebrand
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Steijn E J Beekman
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Thijs van der Drift
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Sam Kaart
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Anthonie Šantić
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Esmee E Spuijbroek
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Nick Gerrits
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Mark F Somers
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
3
|
Wei Z, Martirez JMP, Carter EA. Introducing the embedded random phase approximation: H2 dissociative adsorption on Cu(111) as an exemplar. J Chem Phys 2023; 159:194108. [PMID: 37971031 DOI: 10.1063/5.0181229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
The random phase approximation (RPA) as a means of treating electron correlation recently has been shown to outperform standard density functional theory (DFT) approximations in a variety of cases. However, the computational cost of the RPA is substantially more than DFT, especially when aiming to study extended surfaces. Properly accounting for sufficient surface ensemble size, Brillouin zone sampling, and vacuum separation of periodic images in standard periodic-planewave-based DFT code raises the cost to achieve converged results. Here, we show that sub-system embedding schemes enable use of the RPA for modeling heterogeneous reactions at reduced computational cost. We explore two different embedded RPA (emb-RPA) approaches, periodic emb-RPA and cluster emb-RPA. We use the (experimentally and theoretically) well-studied H2 dissociative adsorption on Cu(111) as our exemplar, and first perform full periodic RPA calculations as a benchmark. The full RPA results match well the semi-empirical barrier fit to experimental observables and others derived from high-level computations, e.g., from recent embedded n-electron valence second order perturbation theory [Zhao et al., J. Chem. Theory Comput. 16(11), 7078-7088 (2020)] and quantum Monte Carlo [Doblhoff-Dier et al., J. Chem. Theory Comput. 13(7), 3208-3219 (2017)] simulations. Among the two emb-RPA approaches tested, the cluster emb-RPA accurately reproduces the energy profile (maximum error of 50 meV along the reaction pathway) while reducing the computational cost by approximately two orders of magnitude. We therefore expect that the embedded cluster approach will enable wider RPA implementation in heterogeneous catalysis.
Collapse
Affiliation(s)
- Ziyang Wei
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
| | - John Mark P Martirez
- Applied Materials and Sustainability Sciences, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540-6655, USA
| | - Emily A Carter
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
- Applied Materials and Sustainability Sciences, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540-6655, USA
- Andlinger Center for Energy and the Environment and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
4
|
Chen Z, Liu Z, Xu X. Accurate descriptions of molecule-surface interactions in electrocatalytic CO 2 reduction on the copper surfaces. Nat Commun 2023; 14:936. [PMID: 36807556 PMCID: PMC9941474 DOI: 10.1038/s41467-023-36695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Copper-based catalysts play a pivotal role in many industrial processes and hold a great promise for electrocatalytic CO2 reduction reaction into valuable chemicals and fuels. Towards the rational design of catalysts, the growing demand on theoretical study is seriously at odds with the low accuracy of the most widely used functionals of generalized gradient approximation. Here, we present results using a hybrid scheme that combines the doubly hybrid XYG3 functional and the periodic generalized gradient approximation, whose accuracy is validated against an experimental set on copper surfaces. A near chemical accuracy is established for this set, which, in turn, leads to a substantial improvement for the calculated equilibrium and onset potentials as against the experimental values for CO2 reduction to CO on Cu(111) and Cu(100) electrodes. We anticipate that the easy use of the hybrid scheme will boost the predictive power for accurate descriptions of molecule-surface interactions in heterogeneous catalysis.
Collapse
Affiliation(s)
- Zheng Chen
- grid.8547.e0000 0001 0125 2443Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Zhangyun Liu
- grid.8547.e0000 0001 0125 2443Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, 200433, Shanghai, People's Republic of China. .,Hefei National Laboratory, 230088, Hefei, P. R. China.
| |
Collapse
|
5
|
Hellier A, Chizallet C, Raybaud P. PtO x Cl y (OH) z (H 2 O) n Complexes under Oxidative and Reductive Conditions: Impact of the Level of Theory on Thermodynamic Stabilities. Chemphyschem 2023; 24:e202200711. [PMID: 36216780 PMCID: PMC10100086 DOI: 10.1002/cphc.202200711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Indexed: 02/03/2023]
Abstract
Platinum-based catalysts with Cl- , OH- , O2- and H2 O ligands, are involved in many industrial processes. Their final chemical properties are impacted by calcination and reduction applied during the preparation and activation steps. We investigate their stability under these reactive conditions with density functional theory (DFT). We benchmark various functionals (PBE-dDsC, optPBE, B3LYP, HSE06, PBE0, TPSS, RTPSS and SCAN) against ACFDT-RPA. PBE-dDsC is well adapted, although hybrid functionals are more accurate for redox reactions. Thermodynamic phase diagrams are determined by computing the chemical potential of the species as a function of temperature and partial pressures of H2 O, HCl, O2 and H2 . The stability and nature of the Pt species are highly sensitive to the activation conditions. Under O2 , high temperatures favour PtO2 while under H2 , platinum is easily reduced to Pt(0). Chlorine modifies the coordination sphere of platinum during calcination by stabilizing PtCl4 and shifts the reduction of platinum to higher temperatures under H2 .
Collapse
Affiliation(s)
- Adrien Hellier
- IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize, BP 3-69360, Solaize, France
| | - Céline Chizallet
- IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize, BP 3-69360, Solaize, France
| | - Pascal Raybaud
- IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize, BP 3-69360, Solaize, France.,Univ Lyon, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, 69342, Lyon, France
| |
Collapse
|
6
|
Wei Z, Sautet P. Improving the Accuracy of Modelling CO
2
Electroreduction on Copper Using Many‐Body Perturbation Theory. Angew Chem Int Ed Engl 2022; 61:e202210060. [DOI: 10.1002/anie.202210060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Ziyang Wei
- Department of Chemistry and Biochemistry University of California Los Angeles CA, 90095 USA
| | - Philippe Sautet
- Department of Chemistry and Biochemistry University of California Los Angeles CA, 90095 USA
- Department of Chemical and Biomolecular Engineering University of California Los Angeles CA, 90095 USA
| |
Collapse
|
7
|
Wei Z, Sautet P. Improving the Accuracy of Modelling CO2 Electroreduction on Copper Using Many‐Body Perturbation Theory. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ziyang Wei
- UCLA: University of California Los Angeles Chemistry and Biochemistry UNITED STATES
| | - Philippe Sautet
- University of California Los Angeles Chemical and Biomolecular Engineering 5531 Boelter HallBox 951592 90095-1592 Los Angeles UNITED STATES
| |
Collapse
|
8
|
Wei Z, Göltl F, Steinmann SN, Sautet P. Modeling Electrochemical Processes with Grand Canonical Treatment of Many-Body Perturbation Theory. J Phys Chem Lett 2022; 13:6079-6084. [PMID: 35758931 DOI: 10.1021/acs.jpclett.2c01376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrocatalysis plays a key role in sustainable energy conversion and storage. It is critical to model the grand canonical treatment of electrons, which accounts for the electrochemical potential explicitly, at the atomic scale and understand these reactions at electrified interfaces. However, such a grand canonical treatment for electrocatalytic modeling is in practice restricted to a treatment of electronic structure with density functional theory, and more accurate methods are in many cases desirable. Here, we develop an original workflow combining the grand canonical treatment of electrons with many-body perturbation theory in its random phase approximation (RPA). Using the potential dependent adsorption of carbon monoxide on the copper (100) facet, we show that the grand canonical RPA energetics provide the correct on-top Cu geometry for CO at reducing potential. The match with experimental results is significantly improved compared to the functionals at the generalized gradient approximation level, which is the most commonly used approximation for electrochemical applications. We expect this development to pave the way to further electrochemical applications using RPA.
Collapse
Affiliation(s)
- Ziyang Wei
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Florian Göltl
- Department of Biosystems Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Stephan N Steinmann
- ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 Allée d'Italie, 69342, Lyon, France
| | - Philippe Sautet
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Ye HZ, Berkelbach TC. Correlation-Consistent Gaussian Basis Sets for Solids Made Simple. J Chem Theory Comput 2022; 18:1595-1606. [PMID: 35192359 DOI: 10.1021/acs.jctc.1c01245] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rapidly growing interest in simulating condensed-phase materials using quantum chemistry methods calls for a library of high-quality Gaussian basis sets suitable for periodic calculations. Unfortunately, most standard Gaussian basis sets commonly used in molecular simulation show significant linear dependencies when used in close-packed solids, leading to severe numerical issues that hamper the convergence to the complete basis set (CBS) limit, especially in correlated calculations. In this work, we revisit Dunning's strategy for construction of correlation-consistent basis sets and examine the relationship between accuracy and numerical stability in periodic settings. We find that limiting the number of primitive functions avoids the appearance of problematic small exponents while still providing smooth convergence to the CBS limit. As an example, we generate double-, triple-, and quadruple-ζ correlation-consistent Gaussian basis sets for periodic calculations with Goedecker-Teter-Hutter (GTH) pseudopotentials. Our basis sets cover the main-group elements from the first three rows of the periodic table. Especially for atoms on the left side of the periodic table, our basis sets are less diffuse than those used in molecular calculations. We verify the fast and reliable convergence to the CBS limit in both Hartree-Fock and post-Hartree-Fock (MP2) calculations, using a diverse test set of 19 semiconductors and insulators.
Collapse
Affiliation(s)
- Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| |
Collapse
|