1
|
Larsson HR. Benchmarking Vibrational Spectra: 5000 Accurate Eigenstates of Acetonitrile Using Tree Tensor Network States. J Phys Chem Lett 2025; 16:3991-3997. [PMID: 40227185 PMCID: PMC12035860 DOI: 10.1021/acs.jpclett.5c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Accurate vibrational spectra are essential for understanding how molecules behave, yet their computation remains challenging, and benchmark data to reliably compare different methods are sparse. Here, we present high-accuracy eigenstate computations for the six-atom, 12-dimensional acetonitrile molecule, a prototypical, strongly coupled anharmonic system. Using a density matrix renormalization group (DMRG) algorithm with a tree-tensor-network-state (TTNS) ansatz, a refinement using TTNSs as basis set, and reliable procedures to estimate energy errors, we compute up to 5,000 vibrational states with error estimates below 0.0007 cm-1. Our analysis reveals that previous works underestimated the energy error by up to 2 orders of magnitude. Our data serve as a benchmark for future vibrational spectroscopy methods, and our new method offers a path toward similarly precise computations of large, complex molecular systems.
Collapse
Affiliation(s)
- Henrik R. Larsson
- Department of Chemistry and
Biochemistry, University of California, Merced, California 95343, United States
| |
Collapse
|
2
|
Menczer A, Legeza Ö. Massively Parallel Tensor Network State Algorithms on Hybrid CPU-GPU Based Architectures. J Chem Theory Comput 2025; 21:1572-1587. [PMID: 39902559 DOI: 10.1021/acs.jctc.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
The interplay of quantum and classical simulation and the delicate divide between them is in the focus of massively parallelized tensor network state (TNS) algorithms designed for high performance computing (HPC). In this contribution, we present novel algorithmic solutions together with implementation details to extend current limits of TNS algorithms on HPC infrastructure building on state-of-the-art hardware and software technologies. Benchmark results obtained via large-scale density matrix renormalization group (DMRG) simulations on single node multiGPU NVIDIA A100 system are presented for selected strongly correlated molecular systems addressing problems on Hilbert space dimensions up to 4.17 × 1035.
Collapse
Affiliation(s)
- Andor Menczer
- Strongly Correlated Systems "Lendület" Research Group, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
- Eötvös Loránd University, Pázmány Péter Sétány 1/C, 1117 Budapest, Hungary
| | - Örs Legeza
- Strongly Correlated Systems "Lendület" Research Group, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2a, 85748 Garching, Germany
| |
Collapse
|
3
|
Cheng Y, Xie Z, Xie X, Ma H. Efficient Simulation of Inhomogeneously Correlated Systems Using Block Interaction Product States. J Chem Theory Comput 2024; 20:9977-9990. [PMID: 39506188 DOI: 10.1021/acs.jctc.4c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The strength of the density matrix renormalization group (DMRG) in handling strongly correlated systems lies in its unbiased and simultaneous treatment of identical sites that are both energetically degenerate and spatially similar, as typically encountered in physical models. However, this very feature becomes a drawback when DMRG is applied to quantum chemistry calculations for large, realistic correlated systems. This is because entangled orbitals often span broad ranges in both energy and space, with their interactions being notably inhomogeneous. In this study, we suggest addressing the strong intrafragment correlations and weak interfragment correlations separately, utilizing a large-scale multiconfigurational calculation framework grounded in the block interaction product state formulation. The strong intrafragment correlation can be encapsulated in several electronic states located on fragments, which are obtained by considering the entanglement between fragments and their environments. Moreover, we incorporate non-Abelian spin-SU(2) symmetry in our work to target the desired states we interested with well-defined particle number and spin, providing deeper insights into the corresponding chemical processes. The described method has been examined in various chemical systems and demonstrates high efficiency in addressing the inhomogeneous effects in strong correlation quantum chemistry.
Collapse
Affiliation(s)
- Yifan Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhaoxuan Xie
- Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstr. 37, München D-80333, Germany
| | - Xiaoyu Xie
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
4
|
Wahyutama IS, Larsson HR. Simulating Real-Time Molecular Electron Dynamics Efficiently Using the Time-Dependent Density Matrix Renormalization Group. J Chem Theory Comput 2024; 20:9814-9831. [PMID: 39533900 PMCID: PMC11603620 DOI: 10.1021/acs.jctc.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Compared to ground-state electronic structure optimizations, accurate simulations of molecular real-time electron dynamics are usually much more difficult to perform. To simulate electron dynamics, the time-dependent density matrix renormalization group (TDDMRG) has been shown to offer an attractive compromise between accuracy and cost. However, many simulation parameters significantly affect the quality and efficiency of a TDDMRG simulation. So far, it is unclear whether common wisdom from ground-state DMRG carries over to the TDDMRG, and a guideline on how to choose these parameters is missing. Here, in order to establish such a guideline, we investigate the convergence behavior of the main TDDMRG simulation parameters, such as time integrator, the choice of orbitals, and the choice of matrix-product-state representation for complex-valued nonsinglet states. In addition, we propose a method to select orbitals that are tailored to optimize the dynamics. Lastly, we showcase the TDDMRG by applying it to charge migration ionization dynamics in furfural, where we reveal a rapid conversion from an ionized state with a σ character to one with a π character within less than a femtosecond.
Collapse
Affiliation(s)
- Imam S Wahyutama
- Department of Chemistry and Biochemistry, University of California, Merced, California 95343, United States
| | - Henrik R Larsson
- Department of Chemistry and Biochemistry, University of California, Merced, California 95343, United States
| |
Collapse
|
5
|
Ren X, Zou J, Li W, Li S. Block-Correlated Coupled Cluster Theory Based on the Generalized Valence Bond Reference for Singlet-Triplet Energy Gaps of Strongly Correlated Systems. J Phys Chem Lett 2024; 15:11342-11352. [PMID: 39499906 DOI: 10.1021/acs.jpclett.4c02362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
A block-correlated coupled cluster (BCCC) method based on the triplet generalized valence bond (GVB) wave function (GVB-BCCC) has been implemented for the first time. By introducing several techniques, we have developed a practical and efficient GVB-BCCC code. The GVB-BCCC3 method (with up to three-pair correlation) can be used to deal with strongly correlated (SC) systems with triplet or singlet ground states, allowing singlet-triplet (S-T) energy gaps in the active space of SC systems computationally available. For selected SC systems, our calculations show that GVB-BCCC3 can always provide correct ground-state spin multiplicity as the complete active space configuration interaction (CASCI) or density matrix renormalization group (DMRG). Furthermore, we found that the S-T energy gaps from GVB-BCCC3 are quite consistent with CASCI or DMRG results. This work demonstrates that GVB-BCCC3 is a promising theoretical tool for describing S-T energy gaps within the active space of SC systems with large active spaces.
Collapse
Affiliation(s)
- Xiaochuan Ren
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jingxiang Zou
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Wei Li
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Shuhua Li
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
6
|
Matoušek M, Vu N, Govind N, Foley JJ, Veis L. Polaritonic Chemistry Using the Density Matrix Renormalization Group Method. J Chem Theory Comput 2024; 20:9424-9434. [PMID: 39441199 PMCID: PMC11562376 DOI: 10.1021/acs.jctc.4c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The emerging field of polaritonic chemistry explores the behavior of molecules under strong coupling with cavity modes. Despite recent developments in ab initio polaritonic methods for simulating polaritonic chemistry under electronic strong coupling, their capabilities are limited, especially in cases where the molecule also features strong electronic correlation. To bridge this gap, we have developed a novel method for cavity QED calculations utilizing the Density Matrix Renormalization Group (DMRG) algorithm in conjunction with the Pauli-Fierz Hamiltonian. Our approach is applied to investigate the effect of the cavity on the S0-S1 transition of n-oligoacenes, with n ranging from 2 to 5, encompassing 22 fully correlated π orbitals in the largest pentacene molecule. Our findings indicate that the influence of the cavity intensifies with larger acenes. Additionally, we demonstrate that, unlike the full determinantal representation, DMRG efficiently optimizes and eliminates excess photonic degrees of freedom, resulting in an asymptotically constant computational cost as the photonic basis increases.
Collapse
Affiliation(s)
- Mikuláš Matoušek
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences
of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, 12116 Prague 2, Czech Republic
| | - Nam Vu
- Department
of Chemistry, University of North Carolina
Charlotte, Charlotte, North Carolina 28223, United States
| | - Niranjan Govind
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan J. Foley
- Department
of Chemistry, University of North Carolina
Charlotte, Charlotte, North Carolina 28223, United States
| | - Libor Veis
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences
of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
7
|
Larsson HR, Viel A. 2500 vibronic eigenstates of the NO 3 radical. Phys Chem Chem Phys 2024; 26:24506-24523. [PMID: 39283267 DOI: 10.1039/d4cp02653e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The nitrate radical NO3 plays an important role in atmospheric chemistry, yet many aspects of its coupled and anharmonic vibronic structure remain elusive. Here, using an accurate, coupled full-dimensional diabatic potential that includes five electronic states, we revisit the vibronic spectrum associated with the electronic state. Using recently developed tensor network state methods, we are able to compute more than 2500 vibronic states, thereby increasing the number of computed full-dimensional states by a factor of 50, compared to previous work. While we obtain good agreement with experiment for most of the assigned vibronic levels, for several others, we observe striking disagreement. Further, for the antisymmetric bending motion we find remarkably large symmetry-induced level splittings that are larger than the zero-order reference. We discuss non-negligible nonadiabatic effects and show that the Born-Oppenheimer approximation leads to significant errors in the spectrum.
Collapse
Affiliation(s)
- Henrik R Larsson
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95343, USA. NO3a[at]larsson-research.δe
| | - Alexandra Viel
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France. alexandra.viel[at]univ-rennes1.fr
| |
Collapse
|
8
|
Sheng Z, Jiang T, Li W, Shuai Z. TD-DMRG Study of Exciton Dynamics with both Thermal and Static Disorders for Fenna-Matthews-Olson Complex. J Chem Theory Comput 2024. [PMID: 39087905 DOI: 10.1021/acs.jctc.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Photosynthesis is a fundamental process that converts solar energy into chemical energy. Understanding the microscopic mechanisms of energy transfer in photosynthetic systems is crucial for the development of novel optoelectronic materials. Simulating these processes poses significant challenges due to the intricate interactions between electrons and phonons, compounded by static disorder. In this work, we present a numerically nearly exact study using the time-dependent density matrix renormalization group (TD-DMRG) method to simulate the quantum dynamics of the Fenna-Matthews-Olson (FMO) complex considering an eight-site model with both thermal and static disorders. We employ the thermo-field dynamics formalism for temperature effects. We merge all electronic interactions into one large matrix product state (MPS) site, boosting accuracy efficiently without increasing complexity. Previous combined experimental and computational studies indicated that the static disorders range from 30 to 90 cm-1 for different FMO sites. We employ a Gaussian distribution and the auxiliary bosonic operator approach to consider the static disorder in our TD-DMRG algorithm. We investigate the impact of different initial excitation sites, temperatures, and degrees of static disorder on the exciton dynamics and temporal coherence. It is found that under the influence of the experimentally determined static disorder strength, the exciton population evolution shows a non-negligible difference at zero temperature, while it is hardly affected at room temperature.
Collapse
Affiliation(s)
- Zirui Sheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, P. R. China
| | - Weitang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Zhigang Shuai
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, P. R. China
| |
Collapse
|
9
|
Cheng Y, Ma H. Renormalized-Residue-Based Multireference Configuration Interaction Method for Strongly Correlated Systems. J Chem Theory Comput 2024; 20:1988-2009. [PMID: 38380619 DOI: 10.1021/acs.jctc.3c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The implementation of multireference configuration interaction (MRCI) methods in quantum systems with large active spaces is hindered by the expansion of configuration bases or the intricate handling of reduced density matrices (RDMs). In this work, we present a spin-adapted renormalized-residue-based MRCI (RR-MRCI) approach that leverages renormalized residues to effectively capture the entanglement between active and inactive orbitals. This approach is reinforced by a novel efficient algorithm, which also facilitates an efficient deployment of spin-adapted matrix product state MRCI (MPS-MRCI). The RR-MRCI framework possesses several advantages: (1) It considers the orbital entanglement and utilizes highly compressed MPS structure, improving computational accuracy and efficiency compared with internally contracted (ic) MRCI. (2) Utilizing small-sized buffer environments of a few external orbitals as probes based on quantum information theory, it enhances computational efficiency over MPS-MRCI and offers potential application to large molecular systems. (3) The RR framework can be implemented in conjunction with ic-MRCI, eliminating the need for high-rank RDMs, by using distinct renormalized residues. We evaluated this method across nine diverse molecular systems, including Cu2O22+ with an active space of (24e,24o) and two complexes of lanthanide and actinide with active space (38e,36o), demonstrating the method's versatility and efficacy.
Collapse
Affiliation(s)
- Yifan Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
10
|
Ren X, Zou J, Zhang H, Li W, Li S. Block-Correlated Coupled Cluster Theory with up to Four-Pair Correlation for Accurate Static Correlation of Strongly Correlated Systems. J Phys Chem Lett 2024; 15:693-700. [PMID: 38207241 DOI: 10.1021/acs.jpclett.3c03373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A block-correlated coupled cluster method with up to four-pair correlation based on the generalized valence bond wave function (GVB-BCCC4) is first implemented, which offers an alternative method for electronic structure calculations of strongly correlated systems. We developed some techniques to derive a set of compact and cost-effective equations for GVB-BCCC4, which include the definition of n-block (n = 1-4) Hamiltonian matrices, the combination of excitation operators, and the definition of independent amplitudes. We then applied the GVB-BCCC4 method to investigate several potential energy surfaces of strongly correlated systems with singlet ground states. Our calculations demonstrate that the GVB-BCCC4 method can provide nearly exact static correlation energies as the density matrix renormalization group method (on the basis of the same GVB orbitals). This work highlights the significance of four-pair correlation in quantitative descriptions of static correlation energy for strongly correlated systems.
Collapse
Affiliation(s)
- Xiaochuan Ren
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Jingxiang Zou
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Haodong Zhang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Wei Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, New Cornerstone Science Laboratory, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
11
|
Friesecke G, Barcza G, Legeza Ö. Predicting the FCI Energy of Large Systems to Chemical Accuracy from Restricted Active Space Density Matrix Renormalization Group Calculations. J Chem Theory Comput 2024; 20:87-102. [PMID: 38109339 DOI: 10.1021/acs.jctc.3c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
We theoretically derive and validate with large scale simulations a remarkably accurate power law scaling of errors for the restricted active space density matrix renormalization group (DMRG-RAS) method [J. Phys. Chem. A 126, 9709] in electronic structure calculations. This yields a new extrapolation method, DMRG-RAS-X, which reaches chemical accuracy for strongly correlated systems such as the chromium dimer, dicarbon up to a large cc-pVQZ basis and even a large chemical complex such as the FeMoco with significantly lower computational demands than those of previous methods. The method is free of empirical parameters, performed robustly and reliably in all examples we tested, and has the potential to become a vital alternative method for electronic structure calculations in quantum chemistry and more generally for the computation of strong correlations in nuclear and condensed matter physics.
Collapse
Affiliation(s)
- Gero Friesecke
- Department of Mathematics, Technical University of Munich, München 85748, Germany
| | - Gergely Barcza
- Strongly Correlated Systems Lendület Research Group, Wigner Research Centre for Physics, Budapest H-1525, Hungary
| | - Örs Legeza
- Strongly Correlated Systems Lendület Research Group, Wigner Research Centre for Physics, Budapest H-1525, Hungary
- Institute for Advanced Study, Technical University of Munich, Germany, Lichtenbergstrasse 2a, Garching 85748, Germany
| |
Collapse
|
12
|
Zhai H, Larsson HR, Lee S, Cui ZH, Zhu T, Sun C, Peng L, Peng R, Liao K, Tölle J, Yang J, Li S, Chan GKL. Block2: A comprehensive open source framework to develop and apply state-of-the-art DMRG algorithms in electronic structure and beyond. J Chem Phys 2023; 159:234801. [PMID: 38108484 DOI: 10.1063/5.0180424] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
block2 is an open source framework to implement and perform density matrix renormalization group and matrix product state algorithms. Out-of-the-box it supports the eigenstate, time-dependent, response, and finite-temperature algorithms. In addition, it carries special optimizations for ab initio electronic structure Hamiltonians and implements many quantum chemistry extensions to the density matrix renormalization group, such as dynamical correlation theories. The code is designed with an emphasis on flexibility, extensibility, and efficiency and to support integration with external numerical packages. Here, we explain the design principles and currently supported features and present numerical examples in a range of applications.
Collapse
Affiliation(s)
- Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Henrik R Larsson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhi-Hao Cui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Tianyu Zhu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Chong Sun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Linqing Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ruojing Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ke Liao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Johannes Tölle
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Junjie Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Shuoxue Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
13
|
Xu Y, Cheng Y, Song Y, Ma H. New Density Matrix Renormalization Group Approaches for Strongly Correlated Systems Coupled with Large Environments. J Chem Theory Comput 2023. [PMID: 37471519 DOI: 10.1021/acs.jctc.2c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Thanks to the high compression of the matrix product state (MPS) form of the wave function and the efficient site-by-site iterative sweeping optimization algorithm, the density matrix normalization group (DMRG) and its time-dependent variant (TD-DMRG) have been established as powerful computational tools in accurately simulating the electronic structure and quantum dynamics of strongly correlated molecules with a large number (101-2) of quantum degrees of freedom (active orbitals or vibrational modes). However, the quantitative characterization of the quantum many-body behaviors of realistic strongly correlated systems requires a further consideration of the interaction between the embedded active subsystem and the remaining correlated environment, e.g., a larger number (102-3) of external orbitals in electronic structure or infinite condensed-phase phononic modes in nucleus dynamics. To this end, we introduced three new post-DMRG and TD-DMRG approaches, namely (1) DMRG2sCI-MRCI and DMRG2sCI-ENPT by the reconstruction of selected configuration interaction (sCI) type of compact reference function from DMRG coefficients and the use of externally contracted MRCI (multireference configuration interaction) and Epstein-Nesbet perturbation theory (ENPT), without recourse to the expensive high order n-electron reduced density matrices (n-RDMs). (2) DMRG combined with RR-MRCI (renormalized residue-based MRCI), which improves the computational accuracy and efficiency of internally contracted (ic) MRCI by renormalizing the contracted bases with small-sized buffer environment(s) of a few external orbitals as probes based on quantum information theory. (3) HM (hierarchical mapping)-TD-DMRG in which a large environment is reduced to a small number of renormalized environmental modes (which accounts for the most vital system-environment interactions) through stepwise mapping transformation. These advances extend the efficacy of highly accurate DMRG/TD-DMRG computations to the quantitative characterization of the electronic structure and quantum dynamics in realistic strongly correlated systems coupled with large environments and are reviewed in this paper.
Collapse
Affiliation(s)
- Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yifan Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yinxuan Song
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, Qingdao Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
14
|
Liao K, Zhai H, Christlmaier EM, Schraivogel T, Ríos PL, Kats D, Alavi A. Density Matrix Renormalization Group for Transcorrelated Hamiltonians: Ground and Excited States in Molecules. J Chem Theory Comput 2023; 19:1734-1743. [PMID: 36912635 DOI: 10.1021/acs.jctc.2c01207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
We present the theory of a density matrix renormalization group (DMRG) algorithm which can solve for both the ground and excited states of non-Hermitian transcorrelated Hamiltonians and show applications in molecular systems. Transcorrelation (TC) accelerates the basis set convergence rate by including known physics (such as, but not limited to, the electron-electron cusp) in the Jastrow factor used for the similarity transformation. It also improves the accuracy of approximate methods such as coupled cluster singles and doubles (CCSD) as shown by recent studies. However, the non-Hermiticity of the TC Hamiltonians poses challenges for variational methods like DMRG. Imaginary-time evolution on the matrix product state (MPS) in the DMRG framework has been proposed to circumvent this problem, but this is currently limited to treating the ground state and has lower efficiency than the time-independent DMRG (TI-DMRG) due to the need to eliminate Trotter errors. In this work, we show that with minimal changes to the existing TI-DMRG algorithm, namely, replacing the original Davidson solver with the general Davidson solver to solve the non-Hermitian effective Hamiltonians at each site for a few low-lying right eigenstates, and following the rest of the original DMRG recipe, one can find the ground and excited states with improved efficiency compared to the original DMRG when extrapolating to the infinite bond dimension limit in the same basis set. An accelerated basis set convergence rate is also observed, as expected, within the TC framework.
Collapse
Affiliation(s)
- Ke Liao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Thomas Schraivogel
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Pablo López Ríos
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Daniel Kats
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Ali Alavi
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany.,Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
15
|
Barcza G, Werner MA, Zaránd G, Pershin A, Benedek Z, Legeza Ö, Szilvási T. Toward Large-Scale Restricted Active Space Calculations Inspired by the Schmidt Decomposition. J Phys Chem A 2022; 126:9709-9718. [PMID: 36520596 DOI: 10.1021/acs.jpca.2c05952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We present an alternative, memory-efficient, Schmidt decomposition-based description of the inherently bipartite restricted active space (RAS) scheme, which can be implemented effortlessly within the density matrix renormalization group (DMRG) method via the dynamically extended active space procedure. Benchmark calculations are compared against state-of-the-art results of C2 and Cr2, which are notorious for their multireference character. Our results for ground and excited states together with spectroscopic constants demonstrate that the proposed novel approach, dubbed as DMRG-RAS, which is variational and free of uncontrolled method errors, has the potential to outperfom conventional methods for strongly correlated molecules.
Collapse
Affiliation(s)
- Gergely Barcza
- Wigner Research Centre for Physics, H-1525Budapest, Hungary.,Department of Physics of Complex Systems, ELTE Eötvös Loránd University, H-1117, Budapest, Hungary.,Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama35487, United States
| | - Miklós Antal Werner
- Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111Budapest, Hungary.,MTA-BME Quantum Dynamics and Correlations Research Group, H-1111Budapest, Hungary
| | - Gergely Zaránd
- Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111Budapest, Hungary.,MTA-BME Quantum Dynamics and Correlations Research Group, H-1111Budapest, Hungary
| | - Anton Pershin
- Wigner Research Centre for Physics, H-1525Budapest, Hungary
| | - Zsolt Benedek
- Wigner Research Centre for Physics, H-1525Budapest, Hungary.,Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama35487, United States
| | - Örs Legeza
- Wigner Research Centre for Physics, H-1525Budapest, Hungary.,Fachbereich Physik, Philipps-Universität Marburg, 35032Marburg, Germany.,Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2a, 85748Garching, Germany
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama35487, United States
| |
Collapse
|
16
|
Larsson HR, Zhai H, Umrigar CJ, Chan GKL. The Chromium Dimer: Closing a Chapter of Quantum Chemistry. J Am Chem Soc 2022; 144:15932-15937. [PMID: 36001866 PMCID: PMC9460780 DOI: 10.1021/jacs.2c06357] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complex electronic structure and unusual potential energy curve of the chromium dimer have fascinated scientists for decades, with agreement between theory and experiment so far elusive. Here, we present a new ab initio simulation of the potential energy curve and vibrational spectrum that significantly improves on all earlier estimates. Our data support a shift in earlier experimental assignments of a cluster of vibrational frequencies by one quantum number. The new vibrational assignment yields an experimentally derived potential energy curve in quantitative agreement with theory across all bond lengths and across all measured frequencies. By solving this long-standing problem, our results raise the possibility of quantitative quantum chemical modeling of transition metal clusters with spectroscopic accuracy.
Collapse
Affiliation(s)
- Henrik R Larsson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.,Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - C J Umrigar
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, United States
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
17
|
Behnle S, Richter R, Völkl L, Idzko P, Förstner A, Bozkaya U, Fink RF. Accurate Property Prediction by Second Order Perturbation Theory: The REMP and OO-REMP Hybrids. J Chem Phys 2022; 157:104111. [DOI: 10.1063/5.0105628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The prediction of molecular properties such as equilibrium structures or vibrationalwavenumbers is a routine task in computational chemistry. If very high accuracy is required, however, the use of computationally demanding ab initio wavefunction methods is mandatory. We present property calculations utilizing the REMP and OO-REMP hybrid perturbation theories showing that with the latter approach, very accurate results are obtained at second order in perturbation theory. Specifically, equilibrium structures and harmonic vibrational wavenumbers as well as dipole moments of closed and open shell molecules were calculated and compared to the best available experimental results or very accurate calculations.OO-REMP is capable of predicting bond lengths of small closed and open shell molecules with an accuracy of 0.2 pm and 0.5 pm, respectively, often within the range of experimental uncertainty. Equilibrium harmonic vibrational wavenumbers are predicted with an accuracy better than 20 cm−1 . Dipole moments of small closed and open shell molecules are reproduced with a relative error of less than 3 %. Across all investigated properties it turns out that a 20 %:80 % MP:RE mixing ratio consistently provides the best results. This is in line with our previous findings featuring closed and open shell reaction energies.
Collapse
Affiliation(s)
- Stefan Behnle
- Fachbereich II Chemie, Eberhard Karls Universität Tübingen Fachbereich II Chemie, Germany
| | - Robert Richter
- Eberhard Karls Universitat Tubingen Fachbereich II Chemie, Germany
| | - Luca Völkl
- Eberhard Karls Universitat Tubingen Fachbereich II Chemie, Germany
| | - Paul Idzko
- Eberhard Karls Universitat Tubingen Fachbereich II Chemie, Germany
| | - André Förstner
- Eberhard Karls Universitat Tubingen Fachbereich II Chemie, Germany
| | - Uğur Bozkaya
- Department of Chemistry, Hacettepe University, Turkey
| | - Reinhold F Fink
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen Fachbereich II Chemie, Germany
| |
Collapse
|
18
|
Abraham V, Mayhall NJ. Coupled Electron Pair-Type Approximations for Tensor Product State Wave Functions. J Chem Theory Comput 2022; 18:4856-4864. [PMID: 35878319 DOI: 10.1021/acs.jctc.2c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Size extensivity, defined as the correct scaling of energy with system size, is a desirable property for any many-body method. Traditional configuration interaction (CI) methods are not size extensive, hence the error increases as the system gets larger. Coupled electron pair approximation (CEPA) methods can be constructed as simple extensions of a truncated CI that ensures size extensivity. One of the major issues with the CEPA and its variants is that singularities arise in the amplitude equations when the system starts to be strongly correlated. In this work, we extend the traditional Slater determinant based coupled electron pair approaches like CEPA-0, averaged coupled-pair functional, and average quadratic coupled-cluster to a new formulation based on tensor product states (TPS). We show that a TPS basis can often be chosen such that it removes the singularities that commonly destroy the accuracy of CEPA based methods. A suitable TPS representation can be formed by partitioning the system into separate disjoint clusters and forming the final wave function as the tensor product of the many body states of these clusters. We demonstrate the application of these methods on simple bond breaking systems such as CH4 and F2 where determinant based CEPA methods fail. We further apply the TPS-CEPA approach to stillbene isomerization and few planar π-conjugated systems. Overall, the results show that the TPS-CEPA method can remove the singularities and provide improved numerical results compared to common electronic structure methods.
Collapse
Affiliation(s)
- Vibin Abraham
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas J Mayhall
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
19
|
Battaglia S, Fransén L, Fdez Galván I, Lindh R. Regularized CASPT2: an Intruder-State-Free Approach. J Chem Theory Comput 2022; 18:4814-4825. [PMID: 35876618 PMCID: PMC9367007 DOI: 10.1021/acs.jctc.2c00368] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this work we present a new approach to fix the intruder-state
problem (ISP) in CASPT2 based on σp regularization. The resulting σp-CASPT2 method is compared to previous techniques, namely, the real
and imaginary level shifts, on a theoretical basis and by performing
a series of systematic calculations. The analysis is focused on two
aspects, the effectiveness of σp-CASPT2 in removing the ISP and the sensitivity of the approach with
respect to the input parameter. We found that σp-CASPT2 compares favorably with respect to previous
approaches and that different versions, σ1-CASPT2
and σ2-CASPT2, have different potential application
domains. This analysis also reveals the unsuitability of the real
level shift technique as a general way to avoid the intruder-state
problem.
Collapse
Affiliation(s)
- Stefano Battaglia
- Department of Chemistry─BMC, Uppsala University, P. O. Box 576, SE-75123 Uppsala, Sweden
| | - Lina Fransén
- Department of Chemistry─BMC, Uppsala University, P. O. Box 576, SE-75123 Uppsala, Sweden
| | - Ignacio Fdez Galván
- Department of Chemistry─BMC, Uppsala University, P. O. Box 576, SE-75123 Uppsala, Sweden
| | - Roland Lindh
- Department of Chemistry─BMC, Uppsala University, P. O. Box 576, SE-75123 Uppsala, Sweden
| |
Collapse
|