1
|
Chamkin AA, Chamkina ES. Assessment of the applicability of DFT methods to [Cp*Rh]-catalyzed hydrogen evolution processes. J Comput Chem 2024; 45:2624-2639. [PMID: 39052232 DOI: 10.1002/jcc.27468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
The present computational study provides a benchmark of density functional theory (DFT) methods in describing hydrogen evolution processes catalyzed by [Cp*Rh]-containing organometallic complexes. A test set was composed of 26 elementary reactions featuring chemical transformations and bonding situations essential for the field, including the emerging concept of non-innocent Cp* behavior. Reference values were obtained from a highly accurate 3/4 complete basis set and 6/7 complete PNO space extrapolated DLPNO-CCSD(T) energies. The performance of lower-level extrapolation procedures was also assessed. We considered 84 density functionals (DF) (including 13 generalized gradient approximations (GGA), nine meta-GGAs, 33 hybrids, and 29 double-hybrids) and three composite methods (HF-3c, PBEh-3c, and r2SCAN-3c), combined with different types of dispersion corrections (D3(0), D3BJ, D4, and VV10). The most accurate approach is the PBE0-DH-D3BJ (MAD of 1.36 kcal mol-1) followed by TPSS0-D3BJ (MAD of 1.60 kcal mol-1). Low-cost r2SCAN-3c composite provides a less accurate but much faster alternative (MAD of 2.39 kcal mol-1). The widely used Minnesota-family M06-L, M06, and M06-2X DFs should be avoided (MADs of 3.70, 3.94, and 4.01 kcal mol-1, respectively).
Collapse
Affiliation(s)
- Aleksandr A Chamkin
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
| | - Elena S Chamkina
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Nagy PR. State-of-the-art local correlation methods enable affordable gold standard quantum chemistry for up to hundreds of atoms. Chem Sci 2024:d4sc04755a. [PMID: 39246365 PMCID: PMC11376132 DOI: 10.1039/d4sc04755a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
In this feature, we review the current capabilities of local electron correlation methods up to the coupled cluster model with single, double, and perturbative triple excitations [CCSD(T)], which is a gold standard in quantum chemistry. The main computational aspects of the local method types are assessed from the perspective of applications, but the focus is kept on how to achieve chemical accuracy (i.e., <1 kcal mol-1 uncertainty), as well as on the broad scope of chemical problems made accessible. The performance of state-of-the-art methods is also compared, including the most employed DLPNO and, in particular, our local natural orbital (LNO) CCSD(T) approach. The high accuracy and efficiency of the LNO method makes chemically accurate CCSD(T) computations accessible for molecules of hundreds of atoms with resources affordable to a broad computational community (days on a single CPU and 10-100 GB of memory). Recent developments in LNO-CCSD(T) enable systematic convergence and robust error estimates even for systems of complicated electronic structure or larger size (up to 1000 atoms). The predictive power of current local CCSD(T) methods, usually at about 1-2 order of magnitude higher cost than hybrid density functional theory (DFT), has become outstanding on the palette of computational chemistry applicable for molecules of practical interest. We also review more than 50 LNO-based and other advanced local-CCSD(T) applications for realistic, large systems across molecular interactions as well as main group, transition metal, bio-, and surface chemistry. The examples show that properly executed local-CCSD(T) can contribute to binding, reaction equilibrium, rate constants, etc. which are able to match measurements within the error estimates. These applications demonstrate that modern, open-access, and broadly affordable local methods, such as LNO-CCSD(T), already enable predictive computations and atomistic insight for complicated, real-life molecular processes in realistic environments.
Collapse
Affiliation(s)
- Péter R Nagy
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics Műegyetem rkp. 3. H-1111 Budapest Hungary
- HUN-REN-BME Quantum Chemistry Research Group Műegyetem rkp. 3. H-1111 Budapest Hungary
- MTA-BME Lendület Quantum Chemistry Research Group Műegyetem rkp. 3. H-1111 Budapest Hungary
| |
Collapse
|
3
|
Deng YH, Sun TY, Wu YD. Understanding the Nonlinear Hammett Relationship in Osmylation of Olefins with OsO 4-Amine Ligands: Importance of Singlet-Diradical Character. J Org Chem 2024; 89:11173-11182. [PMID: 39072554 DOI: 10.1021/acs.joc.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Although the concerted [3 + 2] mechanism of osmium-catalyzed asymmetric dihydroxylation has been generally accepted, the unusual nonlinear Hammett relationship induced by amine-type ligands remains unexplained. To understand this, we carried out a density functional theory (DFT) study for the osmylation of substituted styrenes by the following: OsO4, OsO4-pyridine, OsO4-4-cyanopyridine, OsO4-4-pyrrolidinopyridine, and OsO4-quinuclidine. Calculations using the M06 functional successfully reproduce the experimentally observed nonlinear relationships. The transition states exhibit considerable singlet-diradical character, which causes the nonlinear Hammett relationship. Regardless of the presence or absence of an amine-type ligand, an electron donation from styrene to OsO4 is observed, indicating no mechanistic change. Calculations indicate that the electronic interaction between the amine-type ligand and styrene also influences the reaction rate.
Collapse
Affiliation(s)
- Yi-Hui Deng
- Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, PR China
| | - Tian-Yu Sun
- Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, PR China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, PR China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Nakajima Y, Ohmura T, Seino J. Using atomic clustering based on structural and electronic descriptors that consider surrounding environment to evaluate local properties of DFT functionals. J Comput Chem 2024; 45:1870-1879. [PMID: 38686778 DOI: 10.1002/jcc.27375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
We developed a method for evaluating the accuracies of the local properties of DFT functionals in detail using a clustering method based on machine learning and structural/electronic descriptors. We generated 36 clusters consistent with human intuition using 30,436 carbon atoms from the QM9 dataset. The results were used to evaluate 13C NMR chemical shifts calculated using 84 DFT functionals. Carbon atoms were grouped based on their similar environments, reducing errors within these groups. This enables more accurate assessment of the accuracy using a specific DFT functional. Therefore, the present atomic clustering provides more detailed insight into accuracy verification.
Collapse
Affiliation(s)
- Yuya Nakajima
- Waseda Research Institute for Science and Engineering, Tokyo, Japan
| | - Takuto Ohmura
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Junji Seino
- Waseda Research Institute for Science and Engineering, Tokyo, Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
5
|
Wei Y, Debnath S, Weber JL, Mahajan A, Reichman DR, Friesner RA. Scalable Ab Initio Electronic Structure Methods with Near Chemical Accuracy for Main Group Chemistry. J Phys Chem A 2024; 128:5796-5807. [PMID: 38970826 DOI: 10.1021/acs.jpca.4c02853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
This study evaluates the precision of widely recognized quantum chemical methodologies, CCSD(T), DLPNO-CCSD(T), and localized ph-AFQMC, for determining the thermochemistry of main group elements. DLPNO-CCSD(T) and localized ph-AFQMC, which offer greater scalability compared to canonical CCSD(T), have emerged over the past decade as pivotal in producing precise benchmark chemical data. Our investigation includes closed-shell, neutral molecules, focusing on their heat of formation and atomization energy sourced from four specific small molecule data sets. First, we selected molecules from the G2 and G3 data sets, noted for their reliable experimental heat of formation data. Additionally, we incorporate molecules from the W4-11 and W4-17 sets, which provide high-level theoretical reference values for atomization energy at 0 K. Our findings reveal that both DLPNO-CCSD(T) and ph-AFQMC methods are capable of achieving a root-mean-square deviation of less than 1 kcal/mol across the combined data set, aligning with the threshold for chemical accuracy. Moreover, we make efforts to confine the maximum deviations within 2 kcal/mol, a degree of precision that significantly broadens the applicability of these methods in fields such as biology and materials science.
Collapse
Affiliation(s)
- Yujing Wei
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sibali Debnath
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - John L Weber
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Ankit Mahajan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
6
|
Otlyotov AA, Moshchenkov AD, Minenkov Y. Ni, Cu, Zn, Pd, Ag and Cd Tetraphenylporphyrin Ab Initio Thermochemistry: Enthalpy of Formation of ZnTPP Revisited. Inorg Chem 2024; 63:10230-10239. [PMID: 38780084 DOI: 10.1021/acs.inorgchem.4c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Groups 10-12 metalloporphyrins have been recognized for their numerous properties essential for the development of new sensing materials. In this work, accurate gas-phase enthalpies of formation, ΔfHm0(g,298.15), are predicted for the series of Ni, Cu, Zn, Pd, Ag, and Cd tetraphenylporphyrins (MTPPs) on the basis of the reaction-based Feller-Peterson-Dixon approach and high-level ab initio DLPNO-CCSD(T) calculations. Our recently developed automatic generator of the balanced chemical reactions was employed to reduce the bias of the theoretical ΔfHm0(g,298.15) toward a particular reaction. Theoretical ΔfHm0(g,298.15) for ZnTPP (227.0 ± 3.4 kcal mol-1) does not support the previously reported experimental value of 132 ± 2 kcal mol-1. The origin of the discrepancy probably lies in the experimental solid-state ΔfHm0(ZnTPP, cr,298.15) as it stems from our theoretical evaluations of the ΔfHm0(cr,298.15) values for the entire set of transition metal TPP complexes. The large discrepancy between experiment and theory also holds when different DFT functionals (ωB97M-V, PBE0-D4, and B3LYP-D4) paired with quadruple-ζ quality basis sets are used for the theoretical calculations. Experimental revisiting of the solid-state enthalpy of formation of ZnTPP and analogue measurements for other transition metal TPPs are needed to resolve the observed discrepancy. Based on the predicted enthalpies of formation of MTPPs, the relative energies of the metal-ligand bonding are evaluated and the trends are compared to those for the complexes of the unsubstituted porphyrin with the same set of metals derived in [Can. J. Chem., 2009, 87, 1063]. According to both studies, Pd complexes exhibit the strongest bonding, while the Cd species are the least stable metallocomplexes within the considered series.
Collapse
Affiliation(s)
- Arseniy A Otlyotov
- N. N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, 119991 Moscow, Russian Federation
| | - Andrey D Moshchenkov
- N. N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, 119991 Moscow, Russian Federation
| | - Yury Minenkov
- N. N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, 119991 Moscow, Russian Federation
| |
Collapse
|
7
|
Becke AD. A remarkably simple dispersion damping scheme and the DH24 double hybrid density functional. J Chem Phys 2024; 160:204118. [PMID: 38818895 DOI: 10.1063/5.0207682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024] Open
Abstract
In recent papers, Becke et al. [J. Chem. Phys. 158, 151103 (2023)] and then Becke [J. Chem. Phys. 159, 241101 (2023)] have developed a novel double hybrid density functional, "DH23," whose terms are based on good local physics. Its 12 coefficients are trained on the GMTKN55 (general main-group thermochemistry, kinetics, and noncovalent interactions) chemical database of Goerigk et al. [Phys. Chem. Chem. Phys. 19, 32184 (2017)]. The lowest GMTKN55 "WTMAD2" error to date for any hybrid or double hybrid density functional was obtained (1.73 kcal/mol for the revDH23 variant). Here, we simplify DH23 by introducing a dispersion damping scheme involving atomic numbers only and one global parameter. The resulting new functional, "DH24," performs as well as its predecessors.
Collapse
Affiliation(s)
- Axel D Becke
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
8
|
Sorathia K, Frantzov D, Tew DP. Improved CPS and CBS Extrapolation of PNO-CCSD(T) Energies: The MOBH35 and ISOL24 Data Sets. J Chem Theory Comput 2024; 20:2740-2750. [PMID: 38513261 PMCID: PMC11008106 DOI: 10.1021/acs.jctc.3c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Computation of heats of reaction of large molecules is now feasible using the domain-based pair natural orbital (PNO)-coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] theory. However, to obtain agreement within 1 kcal/mol of experiment, it is necessary to eliminate basis set incompleteness error, which comprises both the AO basis set error and the PNO truncation error. Our investigation into the convergence to the canonical limit of PNO-CCSD(T) energies with the PNO truncation threshold T shows that errors follow the model E ( T ) = E + A T 1 / 2 . Therefore, PNO truncation errors can be eliminated using a simple two-point CPS extrapolation to the canonical limit so that subsequent CBS extrapolation is not limited by the residual PNO truncation error. Using the ISOL24 and MOBH35 data sets, we find that PNO truncation errors are larger for molecules with significant static correlation and that it is necessary to use very tight thresholds of T = 10 - 8 to ensure that errors do not exceed 1 kcal/mol. We present a lower-cost extrapolation scheme that uses information from small basis sets to estimate the PNO truncation errors for larger basis sets. In this way, the canonical limit of CCSD(T) calculations on sizable molecules with large basis sets can be reliably estimated in a practical way. Using this approach, we report near complete basis set (CBS)-CCSD(T) reaction energies for the full ISOL24 and MOBH35 data sets.
Collapse
Affiliation(s)
- Kesha Sorathia
- University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Damyan Frantzov
- University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - David P. Tew
- University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| |
Collapse
|
9
|
Chernyshov IY, Pidko EA. MACE: Automated Assessment of Stereochemistry of Transition Metal Complexes and Its Applications in Computational Catalysis. J Chem Theory Comput 2024; 20:2313-2320. [PMID: 38365199 PMCID: PMC10938507 DOI: 10.1021/acs.jctc.3c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Computational chemistry pipelines typically commence with geometry generation, well-established for organic compounds but presenting a considerable challenge for transition metal complexes. This paper introduces MACE, an automated computational workflow for converting chemist SMILES/MOL representations of the ligands and the metal center to 3D coordinates for all feasible stereochemical configurations for mononuclear octahedral and square planar complexes directly suitable for quantum chemical computations and implementation in high-throughput computational chemistry workflows. The workflow is validated through a structural screening of a data set of transition metal complexes extracted from the Cambridge Structural Database. To further illustrate the power and capabilities of MACE, we present the results of a model DFT study on the hemilability of pincer ligands in Ru, Fe, and Mn complexes, which highlights the utility of the workflow for both focused mechanistic studies and larger-scale high-throughput pipelines.
Collapse
Affiliation(s)
- Ivan Yu. Chernyshov
- Inorganic Systems Engineering,
Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Evgeny A. Pidko
- Inorganic Systems Engineering,
Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
10
|
Wappett DA, Goerigk L. Exploring CPS-Extrapolated DLPNO-CCSD(T 1) Reference Values for Benchmarking DFT Methods on Enzymatically Catalyzed Reactions. J Phys Chem A 2024; 128:62-72. [PMID: 38124376 DOI: 10.1021/acs.jpca.3c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Domain-based local pair natural orbital coupled-cluster singles doubles with perturbative triples [DLPNO-CCSD(T)] is regularly used to calculate reliable benchmark reference values at a computational cost significantly lower than that of canonical CCSD(T). Recent work has shown that even greater accuracy can be obtained at only a small additional cost through extrapolation to the complete PNO space (CPS) limit. Herein, we test two levels of CPS extrapolation, CPS(5,6), which approximates the accuracy of standard TightPNO, and CPS(6,7), which surpasses it, as benchmark values to test density functional approximations (DFAs) on a small set of organic and transition-metal-dependent enzyme active site models. Between the different reference levels of theory, there are changes in the magnitudes of the absolute deviations for all functionals, but these are small and there is minimal impact on the relative rankings of the tested DFAs. The differences are more significant for the metalloenzymes than the organic enzymes, so we repeat the tests on our entire ENZYMES22 set of organic enzyme active site models [Wappett, D. A.; Goerigk, L. J. Phys. Chem. A 2019, 123, 7057-7074] to confirm that using the CPS extrapolations for the reference values has negligible impact on the benchmarking outcomes. This means that we can particularly recommend CPS(5,6) as an alternative to standard TightPNO settings for calculating reference values, increasing the applicability of DLPNO-CCSD(T) in benchmarking reaction energies and barrier heights of larger models of organic enzymes. DLPNO-CCSD(T1)/CPS(6,7) energies for ENZYMES22 are finally presented as updated reference values for the set, reflecting the recent improvements in the method.
Collapse
Affiliation(s)
- Dominique A Wappett
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
11
|
Becke AD. Doubling down on density-functional theory. J Chem Phys 2023; 159:241101. [PMID: 38146827 DOI: 10.1063/5.0178236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023] Open
Abstract
In a recent paper, Becke et al. [J. Chem. Phys. 158, 151103 (2023)] presented a novel double hybrid density functional, "DH23," whose terms are based on good physics. Its 12 coefficients were trained on the GMTKN55 (general main-group thermochemistry, kinetics, and noncovalent interactions) chemical database of Goerigk et al. [Phys. Chem. Chem. Phys. 19, 32184 (2017)]. The lowest GMTKN55 "WTMAD2" error to date for any hybrid or double hybrid density functional was obtained (1.76 kcal/mol). Here, we make some revisions to DH23 and test its efficacy on reference data beyond GMTKN55, namely, organometallic reaction energies and barrier heights. The results confirm that DH23 is robust outside its training set. In the process, a slightly smaller GMTKN55 WTMAD2 of 1.73 kcal/mol is achieved.
Collapse
Affiliation(s)
- Axel D Becke
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
12
|
Haasler M, Maier TM, Kaupp M. Toward a correct treatment of core properties with local hybrid functionals. J Comput Chem 2023; 44:2461-2477. [PMID: 37635647 DOI: 10.1002/jcc.27211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023]
Abstract
In local hybrid functionals (LHs), a local mixing function (LMF) determines the position-dependent exact-exchange admixture. We report new LHs that focus on an improvement of the LMF in the core region while retaining or partly improving upon the high accuracy in the valence region exhibited by the LH20t functional. The suggested new pt-LMFs are based on a Padé form and modify the previously used ratio between von Weizsäcker and Kohn-Sham local kinetic energies by different powers of the density to enable flexibly improved approximations to the correct high-density and iso-orbital limits relevant for the innermost core region. Using TDDFT calculations for a set of K-shell core excitations of second- and third-period systems including accurate state-of-the-art relativistic orbital corrections, the core part of the LMF is optimized, while the valence part is optimized as previously reported for test sets of atomization energies and reaction barriers (Haasler et al., J Chem Theory Comput 2020, 16, 5645). The LHs are completed by a calibration function that minimizes spurious nondynamical correlation effects caused by the gauge ambiguities of exchange-energy densities, as well as by B95c meta-GGA correlation. The resulting LH23pt functional relates to the previous LH20t functional but specifically improves upon the core region.
Collapse
Affiliation(s)
- Matthias Haasler
- Technische Universität Berlin, Institute of Chemistry Theoretical Chemistry/Quantum Chemistry, Berlin, Germany
| | - Toni M Maier
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Braunschweig, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institute of Chemistry Theoretical Chemistry/Quantum Chemistry, Berlin, Germany
| |
Collapse
|
13
|
Szabó PB, Csóka J, Kállay M, Nagy PR. Linear-Scaling Local Natural Orbital CCSD(T) Approach for Open-Shell Systems: Algorithms, Benchmarks, and Large-Scale Applications. J Chem Theory Comput 2023; 19:8166-8188. [PMID: 37921429 PMCID: PMC10687875 DOI: 10.1021/acs.jctc.3c00881] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
The extension of the highly optimized local natural orbital (LNO) coupled cluster (CC) with single-, double-, and perturbative triple excitations [LNO-CCSD(T)] method is presented for high-spin open-shell molecules based on restricted open-shell references. The techniques enabling the outstanding efficiency of the closed-shell LNO-CCSD(T) variant are adopted, including the iteration- and redundancy-free second-order Møller-Plesset and (T) formulations as well as the integral-direct, memory- and disk use-economic, and OpenMP-parallel algorithms. For large molecules, the efficiency of our open-shell LNO-CCSD(T) method approaches that of its closed-shell parent method due to the application of restricted orbital sets for demanding integral transformations and a novel approximation for higher-order long-range spin-polarization effects. The accuracy of open-shell LNO-CCSD(T) is extensively tested for radicals and reactions thereof, ionization processes, as well as spin-state splittings, and transition-metal compounds. At the size range where the canonical CCSD(T) reference is accessible (up to 20-30 atoms), the average open-shell LNO-CCSD(T) correlation energies are found to be 99.9 to 99.95% accurate, which translates into average absolute deviations of a few tenths of kcal/mol in the investigated energy differences already with the default settings. For more extensive molecules, the local errors may grow, but they can be estimated and decreased via affordable systematic convergence studies. This enables the accurate modeling of large systems with complex electronic structures, as illustrated on open-shell organic radicals and transition-metal complexes of up to 179 atoms as well as on challenging biochemical systems, including up to 601 atoms and 11,000 basis functions. While the protein models involve difficulties for local approximations, such as the spin states of a bounded iron ion or an extremely delocalized singly occupied orbital, the corresponding single-node LNO-CCSD(T) computations were feasible in a matter of days with 10s to 100 GB of memory use. Therefore, the new LNO-CCSD(T) implementation enables highly accurate computations for open-shell systems of unprecedented size and complexity with widely accessible hardware.
Collapse
Affiliation(s)
- P. Bernát Szabó
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - József Csóka
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- HUN-REN-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- HUN-REN-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Péter R. Nagy
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- HUN-REN-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
14
|
Wappett D, Goerigk L. Benchmarking Density Functional Theory Methods for Metalloenzyme Reactions: The Introduction of the MME55 Set. J Chem Theory Comput 2023; 19:8365-8383. [PMID: 37943578 PMCID: PMC10688432 DOI: 10.1021/acs.jctc.3c00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
We present a new benchmark set of metalloenzyme model reaction energies and barrier heights that we call MME55. The set contains 10 different enzymes, representing eight transition metals, both open and closed shell systems, and system sizes of up to 116 atoms. We use four DLPNO-CCSD(T)-based approaches to calculate reference values against which we then benchmark the performance of a range of density functional approximations with and without dispersion corrections. Dispersion corrections improve the results across the board, and triple-ζ basis sets provide the best balance of efficiency and accuracy. Jacob's ladder is reproduced for the whole set based on averaged mean absolute (percent) deviations, with the double hybrids SOS0-PBE0-2-D3(BJ) and revDOD-PBEP86-D4 standing out as the most accurate methods for the MME55 set. The range-separated hybrids ωB97M-V and ωB97X-V also perform well here and can be recommended as a reliable compromise between accuracy and efficiency; they have already been shown to be robust across many other types of chemical problems, as well. Despite the popularity of B3LYP in computational enzymology, it is not a strong performer on our benchmark set, and we discourage its use for enzyme energetics.
Collapse
Affiliation(s)
- Dominique
A. Wappett
- School of Chemistry, The University
of Melbourne, Melbourne, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University
of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
15
|
Neugebauer H, Vuong HT, Weber JL, Friesner RA, Shee J, Hansen A. Toward Benchmark-Quality Ab Initio Predictions for 3d Transition Metal Electrocatalysts: A Comparison of CCSD(T) and ph-AFQMC. J Chem Theory Comput 2023; 19:6208-6225. [PMID: 37655473 DOI: 10.1021/acs.jctc.3c00617] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Generating accurate ab initio ionization energies for transition metal complexes is an important step toward the accurate computational description of their electrocatalytic reactions. Benchmark-quality data is required for testing existing theoretical methods and developing new ones but is complicated to obtain for many transition metal compounds due to the potential presence of both strong dynamical and static electron correlation. In this regime, it is questionable whether the so-called gold standard, coupled cluster with singles, doubles, and perturbative triples (CCSD(T)), provides the desired level of accuracy─roughly 1-3 kcal/mol. In this work, we compiled a test set of 28 3d metal-containing molecules relevant to homogeneous electrocatalysis (termed 3dTMV) and computed their vertical ionization energies (ionization potentials) with CCSD(T) and phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) in the def2-SVP basis set. A substantial effort has been made to converge away the phaseless bias in the ph-AFQMC reference values. We assess a wide variety of multireference diagnostics and find that spin-symmetry breaking of the CCSD wave function and the PBE0 density functional correlate well with our analysis of multiconfigurational wave functions. We propose quantitative criteria based on symmetry breaking to delineate correlation regimes inside of which appropriately performed CCSD(T) can produce mean absolute deviations from the ph-AFQMC reference values of roughly 2 kcal/mol or less and outside of which CCSD(T) is expected to fail. We also present a preliminary assessment of density functional theory (DFT) functionals on the 3dTMV set.
Collapse
Affiliation(s)
- Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Hung T Vuong
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - John L Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - James Shee
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| |
Collapse
|
16
|
Semidalas E, Martin JML. Correlation Consistent Basis Sets for Explicitly Correlated Theory: The Transition Metals. J Chem Theory Comput 2023; 19:5806-5820. [PMID: 37540641 PMCID: PMC10500978 DOI: 10.1021/acs.jctc.3c00506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 08/06/2023]
Abstract
We present correlation consistent basis sets for explicitly correlated (F12) calculations, denoted VnZ(-PP)-F12-wis (n = D,T), for the d-block elements. The cc-pVDZ-F12-wis basis set is contracted to [8s7p5d2f] for the 3d-block, while its ECP counterpart for the 4d and 5d-blocks, cc-pVDZ-PP-F12-wis, is contracted to [6s6p5d2f]. The corresponding contracted sizes for cc-pVTZ(-PP)-F12-wis are [9s8p6d3f2g] for the 3d-block elements and [7s7p6d3f2g] for the 4d and 5d-block elements. Our VnZ(-PP)-F12-wis basis sets are evaluated on challenging test sets for metal-organic barrier heights (MOBH35) and group-11 metal clusters (CUAGAU-2). In F12 calculations, they are found to be about as close to the complete basis set limit as the combination of standard cc-pVnZ-F12 on main-group elements with the standard aug-cc-pV(n+1)Z(-PP) basis sets on the transition metal(s). While our basis sets are somewhat more compact than aug-cc-pV(n+1)Z(-PP), the CPU time benefit is negligible for catalytic complexes that contain only one or two transition metals among dozens of main-group elements; however, it is somewhat more significant for metal clusters.
Collapse
Affiliation(s)
- Emmanouil Semidalas
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| | - Jan M. L. Martin
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| |
Collapse
|
17
|
Corzo HH, Hillers-Bendtsen AE, Barnes A, Zamani AY, Pawłowski F, Olsen J, Jørgensen P, Mikkelsen KV, Bykov D. Corrigendum: Coupled cluster theory on modern heterogeneous supercomputers. Front Chem 2023; 11:1256510. [PMID: 37654900 PMCID: PMC10466216 DOI: 10.3389/fchem.2023.1256510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 09/02/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fchem.2023.1154526.].
Collapse
Affiliation(s)
| | | | | | - Abdulrahman Y. Zamani
- Department of Chemistry and Biochemistry and Center for Chemical Computation and Theory, University of California, Merced, CA, United States
| | - Filip Pawłowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, United States
| | - Jeppe Olsen
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Poul Jørgensen
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Kurt V. Mikkelsen
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Dmytro Bykov
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
18
|
Pogrebetsky J, Siklitskaya A, Kubas A. MP2-Based Correction Scheme to Approach the Limit of a Complete Pair Natural Orbitals Space in DLPNO-CCSD(T) Calculations. J Chem Theory Comput 2023. [PMID: 37338422 DOI: 10.1021/acs.jctc.3c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The domain-based local pair natural orbital (PNO) coupled-cluster DLPNO-CCSD(T) method has been proven to provide accurate single-point energies at a fraction of the cost of canonical CCSD(T) calculations. However, the desired "chemical accuracy" can only be obtained with a large PNO space and extended basis set. We present a simple yet accurate and efficient correction scheme based on a perturbative approach. Here, in addition to DLPNO-CCSD(T) energy, one calculates DLPNO-MP2 correlation energy with the same settings as in the preceding coupled-cluster calculation. In the next step, the canonical MP2 correlation energy is obtained in the same orbital basis. This can be efficiently performed for essentially all molecule sizes accessible with the DLPNO-CCSD(T) method. By taking the difference between the canonical MP2 and DLPNO-MP2 energies, we obtain a correction term that can be added to the DLPNO-CCSD(T) correlation energy. This way, one can obtain the total correlation energy close to the limit of the complete PNO space (cPNO). The presented approach allows us to significantly increase the accuracy of the DLPNO-CCSD(T) method for both closed- and open-shell systems. The latter are known to be especially challenging for locally correlated methods. Unlike the previously developed PNO extrapolation procedure by Altun, Neese, and Bistoni ( J. Chem. Theory Comput. 2020, 16, 6142-6149), this strategy allows us to get the DLPNO-CCSD(T) correlation energy at the cPNO limit in a cost-efficient way, resulting in a minimal overall increase in calculation time as compared to the uncorrected method.
Collapse
Affiliation(s)
- James Pogrebetsky
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warszawa 01-224, Poland
| | - Alexandra Siklitskaya
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warszawa 01-224, Poland
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warszawa 01-224, Poland
| |
Collapse
|
19
|
Corzo HH, Hillers-Bendtsen AE, Barnes A, Zamani AY, Pawłowski F, Olsen J, Jørgensen P, Mikkelsen KV, Bykov D. Coupled cluster theory on modern heterogeneous supercomputers. Front Chem 2023; 11:1154526. [PMID: 37388945 PMCID: PMC10303140 DOI: 10.3389/fchem.2023.1154526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
This study examines the computational challenges in elucidating intricate chemical systems, particularly through ab-initio methodologies. This work highlights the Divide-Expand-Consolidate (DEC) approach for coupled cluster (CC) theory-a linear-scaling, massively parallel framework-as a viable solution. Detailed scrutiny of the DEC framework reveals its extensive applicability for large chemical systems, yet it also acknowledges inherent limitations. To mitigate these constraints, the cluster perturbation theory is presented as an effective remedy. Attention is then directed towards the CPS (D-3) model, explicitly derived from a CC singles parent and a doubles auxiliary excitation space, for computing excitation energies. The reviewed new algorithms for the CPS (D-3) method efficiently capitalize on multiple nodes and graphical processing units, expediting heavy tensor contractions. As a result, CPS (D-3) emerges as a scalable, rapid, and precise solution for computing molecular properties in large molecular systems, marking it an efficient contender to conventional CC models.
Collapse
Affiliation(s)
| | | | | | - Abdulrahman Y. Zamani
- Department of Chemistry and Biochemistry and Center for Chemical Computation and Theory, University of California, Merced, CA, United States
| | - Filip Pawłowski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, United States
| | - Jeppe Olsen
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Poul Jørgensen
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Kurt V. Mikkelsen
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Dmytro Bykov
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
20
|
Altun A, Riplinger C, Neese F, Bistoni G. Exploring the Accuracy Limits of PNO-Based Local Coupled-Cluster Calculations for Transition-Metal Complexes. J Chem Theory Comput 2023; 19:2039-2047. [PMID: 36917767 PMCID: PMC10100528 DOI: 10.1021/acs.jctc.3c00087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
While the domain-based local pair natural orbital coupled-cluster method with singles, doubles, and perturbative triples (DLPNO-CCSD(T)) has proven instrumental for computing energies and properties of large and complex systems accurately, calculations on first-row transition metals with a complex electronic structure remain challenging. In this work, we identify and address the two main error sources that influence the DLPNO-CCSD(T) accuracy in this context, namely, (i) correlation effects from the 3s and 3p semicore orbitals and (ii) dynamic correlation-induced orbital relaxation (DCIOR) effects that are not described by the local MP2 guess. We present a computational strategy that allows us to completely eliminate the DLPNO error associated with semicore correlation effects, while increasing, at the same time, the efficiency of the method. As regards the DCIOR effects, we introduce a diagnostic for estimating the deviation between DLPNO-CCSD(T) and canonical CCSD(T) for systems with significant orbital relaxation.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
21
|
Amanollahi Z, Lampe L, Bensberg M, Neugebauer J, Feldt M. On the accuracy of orbital based multi-level approaches for closed-shell transition metal chemistry. Phys Chem Chem Phys 2023; 25:4635-4648. [PMID: 36662158 DOI: 10.1039/d2cp05056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this work, we investigate the accuracy of the local molecular orbital molecular orbital (LMOMO) scheme and projection-based wave function-in-density functional theory (WF-in-DFT) embedding for the prediction of reaction energies and barriers of typical reactions involving transition metals. To analyze the dependence of the accuracy on the system partitioning, we apply a manual orbital selection for LMOMO as well as the so-called direct orbital selection (DOS) for both approaches. We benchmark these methods on 30 closed shell reactions involving 16 different transition metals. This allows us to devise guidelines for the manual selection as well as settings for the DOS that provide accurate results within an error of 2 kcal mol-1 compared to local coupled cluster. To reach this accuracy, on average 55% of the occupied orbitals have to be correlated with coupled cluster for the current test set. Furthermore, we find that LMOMO gives more reliable relative energies for small embedded regions than WF-in-DFT embedding.
Collapse
Affiliation(s)
- Zohreh Amanollahi
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29A, 18059 Rostock, Germany.
| | - Lukas Lampe
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Moritz Bensberg
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Milica Feldt
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Str. 29A, 18059 Rostock, Germany.
| |
Collapse
|
22
|
Fürst S, Haasler M, Grotjahn R, Kaupp M. Full Implementation, Optimization, and Evaluation of a Range-Separated Local Hybrid Functional with Wide Accuracy for Ground and Excited States. J Chem Theory Comput 2023; 19:488-502. [PMID: 36625881 DOI: 10.1021/acs.jctc.2c00782] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report the first full and efficient implementation of range-separated local hybrid functionals (RSLHs) into the TURBOMOLE program package. This enables the computation of ground-state energies and nuclear gradients as well as excitation energies. Regarding the computational effort, RSLHs scale like regular local hybrid functionals (LHs) with system or basis set size and increase timings by a factor of 2-3 in total. An advanced RSLH, ωLH22t, has been optimized for atomization energies and reaction barriers. It is an extension of the recent LH20t local hybrid and is based on short-range PBE and long-range HF exchange-energy densities, a pig2 calibration function to deal with the gauge ambiguity of exchange-energy densities, and reoptimized B95c correlation. ωLH22t has been evaluated for a wide range of ground-state and excited-state quantities. It further improves upon the already successful LH20t functional for the GMTKN55 main-group energetics test suite, and it outperforms any global hybrid while performing close to the top rung-4 functional, ωB97M-V, for these evaluations when augmented by D4 dispersion corrections. ωLH22t performs excellently for transition-metal reactivity and provides good balance between delocalization errors and left-right correlation for mixed-valence systems, with a somewhat larger bias toward localized states compared to LH20t. It approaches the accuracy of the best local hybrids to date for core, valence singlet and triplet, and Rydberg excitation energies while improving strikingly on intra- and intermolecular charge-transfer excitations, comparable to the most successful range-separated hybrids available.
Collapse
Affiliation(s)
- Susanne Fürst
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Matthias Haasler
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Robin Grotjahn
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
23
|
Müller M, Hansen A, Grimme S. ωB97X-3c: A composite range-separated hybrid DFT method with a molecule-optimized polarized valence double-ζ basis set. J Chem Phys 2023; 158:014103. [PMID: 36610980 DOI: 10.1063/5.0133026] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A new composite density functional theory (DFT) method is presented. It is based on ωB97X-V as one of the best-performing density functionals for the GMTKN55 thermochemistry database and completes the family of "3c" methods toward range-separated hybrid DFT. This method is consistently available for all elements up to Rn (Z = 1-86). Its further key ingredients are a polarized valence double-ζ (vDZP) Gaussian basis set, which was fully optimized in molecular DFT calculations, in combination with large-core effective core potentials and a specially adapted D4 dispersion correction. Unlike most existing double-ζ atomic orbital sets, vDZP shows only small basis set superposition errors (BSSEs) and can compete with standard sets of triple-ζ quality. Small residual BSSE effects are efficiently absorbed by the D4 damping scheme, which overall eliminates the need for an explicit treatment or empirical corrections for BSSE. Thorough tests on a variety of thermochemistry benchmark sets show that the new composite method, dubbed ωB97X-3c, is on par with or even outperforms standard hybrid DFT methods in a quadruple-zeta basis set at a small fraction of the computational cost. Particular strengths of this method are the description of non-covalent interactions and barrier heights, for which it is among the best-performing density functionals overall.
Collapse
Affiliation(s)
- Marcel Müller
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| |
Collapse
|
24
|
Santra G, Martin JM. Performance of Localized-Orbital Coupled-Cluster Approaches for the Conformational Energies of Longer n-Alkane Chains. J Phys Chem A 2022; 126:9375-9391. [PMID: 36508714 PMCID: PMC9791657 DOI: 10.1021/acs.jpca.2c06407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/11/2022] [Indexed: 12/14/2022]
Abstract
We report an update and enhancement of the ACONFL (conformer energies of large alkanes [J. Phys. Chem. A2022,126, 3521-3535]) dataset. For the ACONF12 (n-dodecane) subset, we report basis set limit canonical coupled-cluster with singles, doubles, and perturbative triples [i.e., CCSD(T)] reference data obtained from the MP2-F12/cc-pV{T,Q}Z-F12 extrapolation, [CCSD(F12*)-MP2-F12]/aug-cc-pVTZ-F12, and a (T) correction from conventional CCSD(T)/aug-cc-pV{D,T}Z calculations. Then, we explored the performance of a variety of single and composite localized-orbital CCSD(T) approximations, ultimately finding an affordable localized natural orbital CCSD(T) [LNO-CCSD(T)]-based post-MP2 correction that agrees to 0.006 kcal/mol mean absolute deviation with the revised canonical reference data. In tandem with canonical MP2-F12 complete basis set extrapolation, this was then used to re-evaluate the ACONF16 and ACONF20 subsets for n-hexadecane and n-icosane, respectively. Combining those with the revised canonical reference data for the dodecane conformers (i.e., ACONF12 subset), a revised ACONFL set was obtained. It was then used to assess the performance of different localized-orbital coupled-cluster approaches, such as pair natural orbital localized CCSD(T) [PNO-LCCSD(T)] as implemented in MOLPRO, DLPNO-CCSD(T0) and DLPNO-CCSD(T1) as implemented in ORCA, and LNO-CCSD(T) as implemented in MRCC, at their respective "Normal", "Tight", "vTight", and "vvTight" accuracy settings. For a given accuracy threshold and basis set, DLPNO-CCSD(T1) and DLPNO-CCSD(T0) perform comparably. With "VeryTightPNO" cutoffs, explicitly correlated DLPNO-CCSD(T1)-F12/VDZ-F12 is the best pick among all the DLPNO-based methods tested. To isolate basis set incompleteness from localized-orbital-related truncation errors (domain, LNOs), we have also compared the localized coupled-cluster approaches with canonical DF-CCSD(T)/aug-cc-pVTZ for the ACONF12 set. We found that gradually tightening the cutoffs improves the performance of LNO-CCSD(T), and using a composite scheme such as vTight + 0.50[vTight - Tight] improves things further. For DLPNO-CCSD(T1), "TightPNO" and "VeryTightPNO" offer a statistically similar accuracy, which gets slightly better when TCutPNO is extrapolated to the complete PNO space limit. Similar to Brauer et al.'s [Phys. Chem. Chem. Phys.2016,18 (31), 20905-20925] previous report for the S66x8 noncovalent interactions, the dispersion-corrected direct random phase approximation (dRPA)-based double hybrids perform remarkably well for the ACONFL set. While the revised reference data do not affect any conclusions on the less accurate methods, they may upend orderings for more accurate methods with error statistics on the same order as the difference between reference datasets.
Collapse
Affiliation(s)
- Golokesh Santra
- Department of Molecular Chemistry and
Materials Science, Weizmann Institute of
Science, 7610001Reḥovot, Israel
| | - Jan M.L. Martin
- Department of Molecular Chemistry and
Materials Science, Weizmann Institute of
Science, 7610001Reḥovot, Israel
| |
Collapse
|
25
|
Nagy PR, Gyevi-Nagy L, Lőrincz BD, Kállay M. Pursuing the basis set limit of CCSD(T) non-covalent interaction energies for medium-sized complexes: case study on the S66 compilation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Péter R. Nagy
- Faculty of Chemical Technology and Biotechnology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
- ELKH-BME Quantum Chemistry Research Group, Budapest, Hungary
| | - László Gyevi-Nagy
- Faculty of Chemical Technology and Biotechnology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
- ELKH-BME Quantum Chemistry Research Group, Budapest, Hungary
| | - Balázs D. Lőrincz
- Faculty of Chemical Technology and Biotechnology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
- ELKH-BME Quantum Chemistry Research Group, Budapest, Hungary
| | - Mihály Kállay
- Faculty of Chemical Technology and Biotechnology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
- ELKH-BME Quantum Chemistry Research Group, Budapest, Hungary
| |
Collapse
|
26
|
Grotjahn R, Kaupp M. A Look at Real‐World Transition‐Metal Thermochemistry and Kinetics with Local Hybrid Functionals. Isr J Chem 2022. [DOI: 10.1002/ijch.202200021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Robin Grotjahn
- Technische Universität Berlin Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7 Straße des 17. Juni 135 D-10623 Berlin Germany
| | - Martin Kaupp
- Technische Universität Berlin Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7 Straße des 17. Juni 135 D-10623 Berlin Germany
| |
Collapse
|
27
|
Bensberg M, Neugebauer J. Orbital Pair Selection for Relative Energies in the Domain-Based Local Pair Natural Orbital Coupled-Cluster Method. J Chem Phys 2022; 157:064102. [DOI: 10.1063/5.0100010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
For the accurate computation of relative energies, domain-based local pair natural orbital coupled-cluster [DLPNO-CCSD(T0)] has become increasingly popular. Even though DLPNO-CCSD(T0) shows a formally linear scaling of the computational effort with the system size, accurate predictions of relative energies remain costly. Therefore, multi-level approaches are attractive that focus the available computational resources on a minor part of the molecular system, e.g., a reaction center, where changes in the correlation energy are expected to be the largest. We present a pair-selected multi-level DLPNO-CCSD(T0) ansatz that automatically partitions the orbital pairs according to their contribution to the overall correlation energy change in a chemical reaction. To this end, the localized orbitals are mapped between structures in the reaction; all pair energies are approximated through computationally efficient semi-canonical second-order Møller--Plesser perturbation theory, and the orbital pairs for which the pair energies change significantly are identified. This multi-level approach is significantly more robust than our previously suggested, orbital selection-based multi-level DLPNO-CCSD(T0) ansatz [ J. Chem. Phys. 2021, 155, 224102] for reactions showing only small changes in the occupied orbitals. At the same time, it is even more efficient without added input complexity or accuracy loss compared to the full DLPNO-CCSD(T0) calculation. We demonstrate the accuracy of the multi-level approach for a total of 128 chemical reactions and potential energy curves of weakly interacting complexes from the S66x8 benchmark set.
Collapse
Affiliation(s)
- Moritz Bensberg
- Westfälische Wilhelms-Universität Münster Fachbereich 12 Chemie und Pharmazie, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Fachbereich 12 Chemie und Pharmazie, Germany
| |
Collapse
|
28
|
Gasevic T, Stückrath JB, Grimme S, Bursch M. Optimization of the r 2SCAN-3c Composite Electronic-Structure Method for Use with Slater-Type Orbital Basis Sets. J Phys Chem A 2022; 126:3826-3838. [PMID: 35654439 PMCID: PMC9255700 DOI: 10.1021/acs.jpca.2c02951] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The "Swiss army knife" composite density functional electronic-structure method r2SCAN-3c (J. Chem. Phys. 2021, 154, 064103) is extended and optimized for the use with Slater-type orbital basis sets. The meta generalized-gradient approximation (meta-GGA) functional r2SCAN by Furness et al. is combined with a tailor-made polarized triple-ζ Slater-type atomic orbital (STO) basis set (mTZ2P), the semiclassical London dispersion correction (D4), and a geometrical counterpoise (gCP) correction. Relativistic effects are treated explicitly with the scalar-relativistic zeroth-order regular approximation (SR-ZORA). The performance of the new implementation is assessed on eight geometry and 74 energy benchmark sets, including the extensive GMTKN55 database as well as recent sets such as ROST61 and IONPI19. In geometry optimizations, the STO-based r2SCAN-3c is either on par with or more accurate than the hybrid density functional approximation M06-2X-D3(0)/TZP. In energy calculations, the overall accuracy is similar to the original implementation of r2SCAN-3c with Gaussian-type atomic orbitals (GTO), but basic properties, intermolecular noncovalent interactions, and barrier heights are better described with the STO approach, resulting in a lower weighted mean absolute deviation (WTMAD-2(STO) = 7.15 vs 7.50 kcal mol-1 with the original method) for the GMTKN55 database. The STO-optimized r2SCAN-3c outperforms many conventional hybrid/QZ approaches in most common applications at a fraction of their cost. The reliable, robust, and accurate r2SCAN-3c implementation with STOs is a promising alternative to the original implementation with GTOs and can be generally used for a broad field of quantum chemical problems.
Collapse
Affiliation(s)
- Thomas Gasevic
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Julius B Stückrath
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
29
|
Brémond É, Li H, Pérez-Jiménez ÁJ, Sancho-García JC, Adamo C. Tackling an accurate description of molecular reactivity with double-hybrid density functionals. J Chem Phys 2022; 156:161101. [DOI: 10.1063/5.0087586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this Communication, we assess a panel of 18 double-hybrid density functionals for the modeling of the thermochemical and kinetic properties of an extended dataset of 449 organic chemistry reactions belonging to the BH9 database. We show that most of DHs provide a statistically robust performance to model barrier height and reaction energies in reaching the “chemical accuracy.” In particular, we show that nonempirical DHs, such as PBE0-DH and PBE-QIDH, or minimally parameterized alternatives, such as ωB2PLYP and B2K-PLYP, succeed to accurately model both properties in a balanced fashion. We demonstrate, however, that parameterized approaches, such as ωB97X-2 or DSD-like DHs, are more biased to only one of both properties.
Collapse
Affiliation(s)
- Éric Brémond
- ITODYS, CNRS, Université de Paris, F-75006 Paris, France
| | - Hanwei Li
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), F-75005 Paris, France
| | | | | | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), F-75005 Paris, France
- Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| |
Collapse
|
30
|
Santra G, Semidalas E, Mehta N, Karton A, Martin JML. S66x8 noncovalent interactions revisited: new benchmark and performance of composite localized coupled-cluster methods. Phys Chem Chem Phys 2022; 24:25555-25570. [DOI: 10.1039/d2cp03938a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The S66x8 noncovalent interactions benchmark has been re-evaluated at the “sterling silver” level. Against this, a selection of computationally more economical alternatives has been assayed, ranging from localized CC to double hybrids and SAPT(DFT).
Collapse
Affiliation(s)
- Golokesh Santra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| | - Emmanouil Semidalas
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| | - Nisha Mehta
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Jan M. L. Martin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| |
Collapse
|