1
|
Wang Y, Li D, Li L, Sun R, Wang S. A novel deep learning framework for rolling bearing fault diagnosis enhancement using VAE-augmented CNN model. Heliyon 2024; 10:e35407. [PMID: 39166054 PMCID: PMC11334817 DOI: 10.1016/j.heliyon.2024.e35407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
In the context of burgeoning industrial advancement, there is an increasing trend towards the integration of intelligence and precision in mechanical equipment. Central to the functionality of such equipment is the rolling bearing, whose operational integrity significantly impacts the overall performance of the machinery. This underscores the imperative for reliable fault diagnosis mechanisms in the continuous monitoring of rolling bearing conditions within industrial production environments. Vibration signals are primarily used for fault diagnosis in mechanical equipment because they provide comprehensive information about the equipment's condition. However, fault data often contain high noise levels, high-frequency variations, and irregularities, along with a significant amount of redundant information, like duplication, overlap, and unnecessary information during signal transmission. These characteristics present considerable challenges for effective fault feature extraction and diagnosis, reducing the accuracy and reliability of traditional fault detection methods. This research introduces an innovative fault diagnosis methodology for rolling bearings using deep convolutional neural networks (CNNs) enhanced with variational autoencoders (VAEs). This deep learning approach aims to precisely identify and classify faults by extracting detailed vibration signal features. The VAE enhances noise robustness, while the CNN improves signal data expressiveness, addressing issues like gradient vanishing and explosion. The model employs the reparameterization trick for unsupervised learning of latent features and further trains with the CNN. The system incorporates adaptive threshold methods, the "3/5" strategy, and Dropout methods. The diagnosis accuracy of the VAE-CNN model for different fault types at different rotational speeds typically reaches more than 90 %, and it achieves a generally acceptable diagnosis result. Meanwhile, the VAE-CNN augmented fault diagnosis model, after experimental validation in various dimensions, can achieve more satisfactory diagnosis results for various fault types compared to several representative deep neural network models without VAE augmentation, significantly improving the accuracy and robustness of rolling bearing fault diagnosis.
Collapse
Affiliation(s)
- Yu Wang
- Department of Electrical Engineering, Shijiazhuang Institute of Railway Technology, Shijiazhuang, 050041, China
| | - Dexiong Li
- Department of Electrical Engineering, Shijiazhuang Institute of Railway Technology, Shijiazhuang, 050041, China
| | - Lei Li
- Department of Electrical Engineering, Shijiazhuang Institute of Railway Technology, Shijiazhuang, 050041, China
| | - Runde Sun
- Department of Electrical Engineering, Shijiazhuang Institute of Railway Technology, Shijiazhuang, 050041, China
| | - Shuqing Wang
- Department of Electrical Engineering, Shijiazhuang Institute of Railway Technology, Shijiazhuang, 050041, China
| |
Collapse
|
2
|
Zhu J, Li Z, Tong H, Lu Z, Zhang N, Wei T, Chen HF. Phanto-IDP: compact model for precise intrinsically disordered protein backbone generation and enhanced sampling. Brief Bioinform 2023; 25:bbad429. [PMID: 38018910 PMCID: PMC10783862 DOI: 10.1093/bib/bbad429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/21/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023] Open
Abstract
The biological function of proteins is determined not only by their static structures but also by the dynamic properties of their conformational ensembles. Numerous high-accuracy static structure prediction tools have been recently developed based on deep learning; however, there remains a lack of efficient and accurate methods for exploring protein dynamic conformations. Traditionally, studies concerning protein dynamics have relied on molecular dynamics (MD) simulations, which incur significant computational costs for all-atom precision and struggle to adequately sample conformational spaces with high energy barriers. To overcome these limitations, various enhanced sampling techniques have been developed to accelerate sampling in MD. Traditional enhanced sampling approaches like replica exchange molecular dynamics (REMD) and frontier expansion sampling (FEXS) often follow the MD simulation approach and still cost a lot of computational resources and time. Variational autoencoders (VAEs), as a classic deep generative model, are not restricted by potential energy landscapes and can explore conformational spaces more efficiently than traditional methods. However, VAEs often face challenges in generating reasonable conformations for complex proteins, especially intrinsically disordered proteins (IDPs), which limits their application as an enhanced sampling method. In this study, we presented a novel deep learning model (named Phanto-IDP) that utilizes a graph-based encoder to extract protein features and a transformer-based decoder combined with variational sampling to generate highly accurate protein backbones. Ten IDPs and four structured proteins were used to evaluate the sampling ability of Phanto-IDP. The results demonstrate that Phanto-IDP has high fidelity and diversity in the generated conformation ensembles, making it a suitable tool for enhancing the efficiency of MD simulation, generating broader protein conformational space and a continuous protein transition path.
Collapse
Affiliation(s)
- Junjie Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengxin Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haowei Tong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhouyu Lu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ningjie Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ting Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Lemcke S, Appeldorn JH, Wand M, Speck T. Toward a structural identification of metastable molecular conformations. J Chem Phys 2023; 159:114105. [PMID: 37712784 DOI: 10.1063/5.0164145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Interpreting high-dimensional data from molecular dynamics simulations is a persistent challenge. In this paper, we show that for a small peptide, deca-alanine, metastable states can be identified through a neural net based on structural information alone. While processing molecular dynamics data, dimensionality reduction is a necessary step that projects high-dimensional data onto a low-dimensional representation that, ideally, captures the conformational changes in the underlying data. Conventional methods make use of the temporal information contained in trajectories generated through integrating the equations of motion, which forgoes more efficient sampling schemes. We demonstrate that EncoderMap, an autoencoder architecture with an additional distance metric, can find a suitable low-dimensional representation to identify long-lived molecular conformations using exclusively structural information. For deca-alanine, which exhibits several helix-forming pathways, we show that this approach allows us to combine simulations with different biasing forces and yields representations comparable in quality to other established methods. Our results contribute to computational strategies for the rapid automatic exploration of the configuration space of peptides and proteins.
Collapse
Affiliation(s)
- Simon Lemcke
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Jörn H Appeldorn
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Michael Wand
- Institut für Informatik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Thomas Speck
- Institut für Theoretische Physik IV, Universität Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany
| |
Collapse
|
4
|
Habeck M. Bayesian methods in integrative structure modeling. Biol Chem 2023; 404:741-754. [PMID: 37505205 DOI: 10.1515/hsz-2023-0145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
There is a growing interest in characterizing the structure and dynamics of large biomolecular assemblies and their interactions within the cellular environment. A diverse array of experimental techniques allows us to study biomolecular systems on a variety of length and time scales. These techniques range from imaging with light, X-rays or electrons, to spectroscopic methods, cross-linking mass spectrometry and functional genomics approaches, and are complemented by AI-assisted protein structure prediction methods. A challenge is to integrate all of these data into a model of the system and its functional dynamics. This review focuses on Bayesian approaches to integrative structure modeling. We sketch the principles of Bayesian inference, highlight recent applications to integrative modeling and conclude with a discussion of current challenges and future perspectives.
Collapse
Affiliation(s)
- Michael Habeck
- Microscopic Image Analysis Group, Jena University Hospital, D-07743 Jena, Germany
- Max Planck Institute for Multidisciplinary Sciences, d-37077 Göttingen, Germany
| |
Collapse
|
5
|
Monroe JI, Shen VK. Systematic Control of Collective Variables Learned from Variational Autoencoders. J Chem Phys 2022; 157:094116. [DOI: 10.1063/5.0105120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Variational autoencoders (VAEs) are rapidly gaining popularity within molecular simulation for discovering low-dimensional, or latent, representations, which are critical for both analyzing and accelerating simulations. However, it remains unclear how the information a VAE learns is connected to its probabilistic structure, and, in turn, its loss function. Previous studies have focused on feature engineering, \emph{ad hoc} modifications to loss functions, or adjustment of the prior to enforce desirable latent space properties. By applying effectively arbitrarily flexible priors via normalizing flows, we focus instead on how adjusting the structure of the decoding model impacts the learned latent coordinate. We systematically adjust the power and flexibility of the decoding distribution, observing that this has a significant impact on the structure of the latent space as measured by a suite of metrics developed in this work. By also varying weights on separate terms within each VAE loss function, we show that the level of detail encoded can be further tuned. This provides practical guidance for utilizing VAEs to extract varying resolutions of low-dimensional information from molecular dynamics and Monte Carlo simulations.
Collapse
|