1
|
Danilov D, Ganoe B, Munyi M, Shee J. Capturing Strong Correlation in Molecules with Phaseless Auxiliary-Field Quantum Monte Carlo Using Generalized Hartree-Fock Trial Wave Functions. J Chem Theory Comput 2025; 21:1136-1152. [PMID: 39817358 DOI: 10.1021/acs.jctc.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Generalized Hartree-Fock (GHF) is a long-established electronic structure method that can lower the energy (compared to spin-restricted variants) by breaking physical wave function symmetries, namely S ^ 2 and S ^ z . After an exposition of GHF theory, we assess the use of GHF trial wave functions in phaseless auxiliary field quantum Monte Carlo (ph-AFQMC-G) calculations of strongly correlated molecular systems including symmetrically stretched hydrogen rings, carbon dioxide, and dioxygen. Imaginary time propagation is able to restore S ^ 2 symmetry and yields energies of comparable or better accuracy than CCSD(T) with unrestricted HF and GHF references, and consistently smooth dissociation curves─a remarkable result given the relative scalability of ph-AFQMC-G to larger system sizes. The present exploration of model strongly correlated systems marks a promising starting point for future studies of more chemically relevant molecules, and demonstrates that ph-AFQMC-G provides a highly accurate (and, in contrast to active-space-based trials, relatively black box and always size-consistent) description of challenging systems exhibiting, e.g., antiferromagnetic coupling and/or geometric spin frustration.
Collapse
Affiliation(s)
- Don Danilov
- Department of Chemistry, Rice University, Houston, Texas 77005-1892, United States
| | - Brad Ganoe
- Department of Chemistry, Rice University, Houston, Texas 77005-1892, United States
| | - Mark Munyi
- Department of Chemistry, Rice University, Houston, Texas 77005-1892, United States
| | - James Shee
- Department of Chemistry, Rice University, Houston, Texas 77005-1892, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, United States
| |
Collapse
|
2
|
Mahajan A, Thorpe JH, Kurian JS, Reichman DR, Matthews DA, Sharma S. Beyond CCSD(T) Accuracy at Lower Scaling with Auxiliary Field Quantum Monte Carlo. J Chem Theory Comput 2025. [PMID: 39907123 DOI: 10.1021/acs.jctc.4c01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
We introduce a black-box auxiliary field quantum Monte Carlo (AFQMC) approach to perform highly accurate electronic structure calculations using configuration interaction singles and doubles (CISD) trial states. This method consistently provides more accurate energy estimates than coupled cluster singles and doubles with perturbative triples (CCSD(T)), often regarded as the gold standard in quantum chemistry. This level of precision is achieved at a lower asymptotic computational cost, scaling as O(N6) compared to the O(N7) scaling of CCSD(T). We provide numerical evidence supporting these findings through results for challenging main group and transition metal-containing molecules.
Collapse
Affiliation(s)
- Ankit Mahajan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - James H Thorpe
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Jo S Kurian
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Devin A Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| |
Collapse
|
3
|
Blunt NS, Caune L, Quiroz-Fernandez J. Quantum Computing Approach to Fixed-Node Monte Carlo Using Classical Shadows. J Chem Theory Comput 2025. [PMID: 39909406 DOI: 10.1021/acs.jctc.4c01468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Quantum Monte Carlo (QMC) methods are powerful approaches for solving electronic structure problems. Although they often provide high-accuracy solutions, the precision of most QMC methods is ultimately limited by the trial wave function that must be used. Recently, an approach has been demonstrated to allow the use of trial wave functions prepared on a quantum computer [Huggins et al., Unbiasing fermionic quantum Monte Carlo with a quantum computer. Nature 2022, 603, 416] in the auxiliary-field QMC (AFQMC) method using classical shadows to estimate the required overlaps. However, this approach has an exponential post-processing step to construct these overlaps when performing classical shadows obtained using random Clifford circuits. Here, we study an approach to avoid this exponential scaling step by using a fixed-node Monte Carlo method based on full configuration interaction quantum Monte Carlo. This method is applied to the local unitary cluster Jastrow ansatz. We consider H4, ferrocene, and benzene molecules using up to 12 qubits as examples. Circuits are compiled to native gates for typical near-term architectures, and we assess the impact of circuit-level depolarizing noise on the method. We also provide a comparison of AFQMC and fixed-node approaches, demonstrating that AFQMC is more robust to errors, although extrapolations of the fixed-node energy reduce this discrepancy. Although the method can be used to reach chemical accuracy, the sampling cost to achieve this is high even for small active spaces, suggesting caution about the prospect of outperforming conventional QMC approaches.
Collapse
Affiliation(s)
| | | | - Javiera Quiroz-Fernandez
- Riverlane, Cambridge CB2 3BZ, U.K
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K
| |
Collapse
|
4
|
Weber L, Dos Anjos Cunha L, Morales MA, Rubio A, Zhang S. Phaseless Auxiliary-Field Quantum Monte Carlo Method for Cavity-QED Matter Systems. J Chem Theory Comput 2025. [PMID: 39823201 DOI: 10.1021/acs.jctc.4c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
We present a generalization of the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to cavity quantum-electrodynamical (QED) matter systems. The method can be formulated in both the Coulomb and the dipole gauge. We verify its accuracy by benchmarking calculations on a set of small molecules against full configuration interaction and state-of-the-art QED coupled cluster (QED-CCSD) calculations. Our results show that (i) gauge invariance can be achieved within correlation-consistent Gaussian basis sets, (ii) the accuracy of QED-CCSD can be enhanced significantly by adding the standard perturbative triples correction without light-matter coupling, and (iii) there is a straightforward way to evaluate the differential expression for the photon occupation number that works in any gauge. The high accuracy and favorable computational scaling of our AFQMC approach will enable a broad range of applications. Besides polaritonic chemistry, the method opens a way to simulate extended QED matter systems.
Collapse
Affiliation(s)
- Lukas Weber
- Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Leonardo Dos Anjos Cunha
- Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States
| | - Miguel A Morales
- Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States
| | - Angel Rubio
- Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Shiwei Zhang
- Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States
| |
Collapse
|
5
|
Van Benschoten WZ, Shepherd JJ. Removing Basis Set Incompleteness Error in Finite-Temperature Electronic Structure Calculations: Two-Electron Systems. J Phys Chem A 2024; 128:10659-10672. [PMID: 39585915 DOI: 10.1021/acs.jpca.4c03769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
We investigate the basis-set-size dependence for quantities related to interacting electrons in the canonical ensemble. Calculations are performed using exact diagonalization (finite temperature full configuration interaction method) on two-electron model systems─the uniform electron gas (UEG) and the helium atom. Our data reproduce previous observations of a competition for how the internal energy converges between the ground-state correlation energy and the high-temperature kinetic energy. We explore how this can be related to component parts of the internal energy including kinetic, exchange, and correlation energies and show there is surprising nuance in how this can be broken down into mostly monotonically converging quantities. We also show that separation of the free energy into a free energy with/without correlation allows for monotonic convergence with basis set size due to the variational principle. We find that the free energy convergence matches the previously observed convergence properties of the internal energy. We discuss the free energy divergence that happens when converging a finite basis analytical hydrogen atom to the complete basis set limit and compare this to the energies of a helium atom in a large periodic box. Reducing the box size, we saw convergence trends for the helium atom that were similar to the UEG.
Collapse
Affiliation(s)
| | - James J Shepherd
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Landinez Borda EJ, Berard KO, Lopez A, Rubenstein B. Gaussian processes for finite size extrapolation of many-body simulations. Faraday Discuss 2024; 254:500-528. [PMID: 39282946 DOI: 10.1039/d4fd00051j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Key to being able to accurately model the properties of realistic materials is being able to predict their properties in the thermodynamic limit. Nevertheless, because most many-body electronic structure methods scale as a high-order polynomial, or even exponentially, with system size, directly simulating large systems in their thermodynamic limit rapidly becomes computationally intractable. As a result, researchers typically estimate the properties of large systems that approach the thermodynamic limit by extrapolating the properties of smaller, computationally-accessible systems based on relatively simple scaling expressions. In this work, we employ Gaussian processes to more accurately and efficiently extrapolate many-body simulations to their thermodynamic limit. We train our Gaussian processes on Smooth Overlap of Atomic Positions (SOAP) descriptors to extrapolate the energies of one-dimensional hydrogen chains obtained using two high-accuracy many-body methods: coupled cluster theory and Auxiliary Field Quantum Monte Carlo (AFQMC). In so doing, we show that Gaussian processes trained on relatively short 10-30-atom chains can predict the energies of both homogeneous and inhomogeneous hydrogen chains in their thermodynamic limit with sub-milliHartree accuracy. Unlike standard scaling expressions, our GPR-based approach is highly generalizable given representative training data and is not dependent on systems' geometries or dimensionality. This work highlights the potential for machine learning to correct for the finite size effects that routinely complicate the interpretation of finite size many-body simulations.
Collapse
Affiliation(s)
| | - Kenneth O Berard
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Annette Lopez
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - Brenda Rubenstein
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
7
|
Atalar K, Rath Y, Crespo-Otero R, Booth GH. Fast and accurate nonadiabatic molecular dynamics enabled through variational interpolation of correlated electron wavefunctions. Faraday Discuss 2024; 254:542-569. [PMID: 39136121 DOI: 10.1039/d4fd00062e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
We build on the concept of eigenvector continuation to develop an efficient multi-state method for the rigorous and smooth interpolation of a small training set of many-body wavefunctions through chemical space at mean-field cost. The inferred states are represented as variationally optimal linear combinations of the training states transferred between the many-body bases of different nuclear geometries. We show that analytic multi-state forces and nonadiabatic couplings from the model enable application to nonadiabatic molecular dynamics, developing an active learning scheme to ensure a compact and systematically improvable training set. This culminates in application to the nonadiabatic molecular dynamics of a photoexcited 28-atom hydrogen chain, with surprising complexity in the resulting nuclear motion. With just 22 DMRG calculations of training states from the low-energy correlated electronic structure at different geometries, we infer the multi-state energies, forces and nonadiabatic coupling vectors at 12 000 geometries with provable convergence to high accuracy along an ensemble of molecular trajectories, which would not be feasible with a brute force approach. This opens up a route to bridge the timescales between accurate single-point correlated electronic structure methods and timescales of relevance for photo-induced molecular dynamics.
Collapse
Affiliation(s)
- Kemal Atalar
- Department of Physics and Thomas Young Centre, King's College London, Strand, London, WC2R 2LS, UK.
| | - Yannic Rath
- Department of Physics and Thomas Young Centre, King's College London, Strand, London, WC2R 2LS, UK.
- National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Rachel Crespo-Otero
- Department of Chemistry University College London, 2020 Gordon St., London, WC1H 0AJ, UK
| | - George H Booth
- Department of Physics and Thomas Young Centre, King's College London, Strand, London, WC2R 2LS, UK.
| |
Collapse
|
8
|
Ye HZ, Berkelbach TC. Adsorption and vibrational spectroscopy of CO on the surface of MgO from periodic local coupled-cluster theory. Faraday Discuss 2024; 254:628-640. [PMID: 39049598 PMCID: PMC11539119 DOI: 10.1039/d4fd00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 07/27/2024]
Abstract
The adsorption of CO on the surface of MgO has long been a model problem in surface chemistry. Here, we report periodic Gaussian-based calculations for this problem using second-order perturbation theory (MP2) and coupled-cluster theory with single and double excitations (CCSD) and perturbative triple excitations [CCSD(T)], with the latter two performed using a recently developed extension of the local natural orbital approximation to problems with periodic boundary conditions. The low cost of periodic local correlation calculations allows us to calculate the full CCSD(T) binding curve of CO approaching the surface of MgO (and thus the adsorption energy) and the two-dimensional potential energy surface (PES) as a function of the distance from the surface and the CO stretching coordinate. From the PES, we obtain the fundamental vibrational frequency of CO on MgO, whose shift from the gas phase value is a common experimental probe of surface adsorption. We find that CCSD(T) correctly predicts a positive frequency shift upon adsorption of +14.7 cm-1, in excellent agreement with the experimental shift of +14.3 cm-1. We use our CCSD(T) results to assess the accuracy of MP2, CCSD, and several density functional theory (DFT) approximations, including exchange correlation functionals and dispersion corrections. We find that MP2 and CCSD yield reasonable binding energies and frequency shifts, whereas many DFT calculations overestimate the magnitude of the adsorption energy by 5-15 kJ mol-1 and predict a negative frequency shift of about -20 cm-1, which we attribute to self-interaction-induced delocalization errors that are mildly ameliorated with hybrid functionals. Our findings highlight the accuracy and computational efficiency of the periodic local correlation for the simulation of surface chemistry with accurate wavefunction methods.
Collapse
Affiliation(s)
- Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
- Initiative for Computational Catalysis, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
9
|
Jiang T, Baumgarten MKA, Loos PF, Mahajan A, Scemama A, Ung SF, Zhang J, Malone FD, Lee J. Improved modularity and new features in ipie: Toward even larger AFQMC calculations on CPUs and GPUs at zero and finite temperatures. J Chem Phys 2024; 161:162502. [PMID: 39450727 DOI: 10.1063/5.0225596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
ipie is a Python-based auxiliary-field quantum Monte Carlo (AFQMC) package that has undergone substantial improvements since its initial release [Malone et al., J. Chem. Theory Comput. 19(1), 109-121 (2023)]. This paper outlines the improved modularity and new capabilities implemented in ipie. We highlight the ease of incorporating different trial and walker types and the seamless integration of ipie with external libraries. We enable distributed Hamiltonian simulations of large systems that otherwise would not fit on a single central processing unit node or graphics processing unit (GPU) card. This development enabled us to compute the interaction energy of a benzene dimer with 84 electrons and 1512 orbitals with multi-GPUs. Using CUDA and cupy for NVIDIA GPUs, ipie supports GPU-accelerated multi-slater determinant trial wavefunctions [Huang et al. arXiv:2406.08314 (2024)] to enable efficient and highly accurate simulations of large-scale systems. This allows for near-exact ground state energies of multi-reference clusters, [Cu2O2]2+ and [Fe2S2(SCH3)4]2-. We also describe implementations of free projection AFQMC, finite temperature AFQMC, AFQMC for electron-phonon systems, and automatic differentiation in AFQMC for calculating physical properties. These advancements position ipie as a leading platform for AFQMC research in quantum chemistry, facilitating more complex and ambitious computational method development and their applications.
Collapse
Affiliation(s)
- Tong Jiang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Moritz K A Baumgarten
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ankit Mahajan
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Shu Fay Ung
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Jinghong Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | - Joonho Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
10
|
Shee A, Faulstich FM, Whaley KB, Lin L, Head-Gordon M. A static quantum embedding scheme based on coupled cluster theory. J Chem Phys 2024; 161:164107. [PMID: 39445617 DOI: 10.1063/5.0214065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
We develop a static quantum embedding scheme that utilizes different levels of approximations to coupled cluster (CC) theory for an active fragment region and its environment. To reduce the computational cost, we solve the local fragment problem using a high-level CC method and address the environment problem with a lower-level Møller-Plesset (MP) perturbative method. This embedding approach inherits many conceptual developments from the hybrid second-order Møller-Plesset (MP2) and CC works by Nooijen [J. Chem. Phys. 111, 10815 (1999)] and Bochevarov and Sherrill [J. Chem. Phys. 122, 234110 (2005)]. We go beyond those works here by primarily targeting a specific localized fragment of a molecule and also introducing an alternative mechanism to relax the environment within this framework. We will call this approach MP-CC. We demonstrate the effectiveness of MP-CC on several potential energy curves and a set of thermochemical reaction energies, using CC with singles and doubles as the fragment solver, and MP2-like treatments of the environment. The results are substantially improved by the inclusion of orbital relaxation in the environment. Using localized bonds as the active fragment, we also report results for N=N bond breaking in azomethane and for the central C-C bond torsion in butadiene. We find that when the fragment Hilbert space size remains fixed (e.g., when determined by an intrinsic atomic orbital approach), the method achieves comparable accuracy with both a small and a large basis set. Additionally, our results indicate that increasing the fragment Hilbert space size systematically enhances the accuracy of observables, approaching the precision of the full CC solver.
Collapse
Affiliation(s)
- Avijit Shee
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Fabian M Faulstich
- Department of Mathematics, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - K Birgitta Whaley
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Berkeley Center for Quantum Information and Computation, Berkeley, California 94720, USA
| | - Lin Lin
- Department of Mathematics, University of California, Berkeley, California 94720, USA
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
11
|
Menczer A, van Damme M, Rask A, Huntington L, Hammond J, Xantheas SS, Ganahl M, Legeza Ö. Parallel Implementation of the Density Matrix Renormalization Group Method Achieving a Quarter petaFLOPS Performance on a Single DGX-H100 GPU Node. J Chem Theory Comput 2024; 20:8397-8404. [PMID: 39297788 PMCID: PMC11465466 DOI: 10.1021/acs.jctc.4c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
We report cutting edge performance results on a single node hybrid CPU-multi-GPU implementation of the spin adapted ab initio Density Matrix Renormalization Group (DMRG) method on current state-of-the-art NVIDIA DGX-H100 architectures. We evaluate the performance of the DMRG electronic structure calculations for the active compounds of the FeMoco, the primary cofactor of nitrogenase, and cytochrome P450 (CYP) enzymes with complete active space (CAS) sizes of up to 113 electrons in 76 orbitals [CAS(113, 76)] and 63 electrons in 58 orbitals [CAS(63, 58)], respectively. We achieve 246 teraFLOPS of sustained performance, an improvement of more than 2.5× compared to the performance achieved on the DGX-A100 architectures and an 80× acceleration compared to an OpenMP parallelized implementation on a 128-core CPU architecture. Our work highlights the ability of tensor network algorithms to efficiently utilize high-performance multi-GPU hardware and shows that the combination of tensor networks with modern large-scale GPU accelerators can pave the way toward solving some of the most challenging problems in quantum chemistry and beyond.
Collapse
Affiliation(s)
- Andor Menczer
- Strongly
Correlated Systems Lendület Research Group, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
- Eötvös
Loránd University, Pázmány Péter Sétány 1/C, 1117 Budapest, Hungary
| | - Maarten van Damme
- SandboxAQ, 780 High Street, Palo Alto, California 94301, United States
| | - Alan Rask
- SandboxAQ, 780 High Street, Palo Alto, California 94301, United States
| | - Lee Huntington
- SandboxAQ, 780 High Street, Palo Alto, California 94301, United States
| | - Jeff Hammond
- NVIDIA
Helsinki Oy, Porkkalankatu 1, 00180 Helsinki, Finland
| | - Sotiris S. Xantheas
- Advanced
Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Martin Ganahl
- SandboxAQ, 780 High Street, Palo Alto, California 94301, United States
| | - Örs Legeza
- Strongly
Correlated Systems Lendület Research Group, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
- Dynaflex
Ltd., Zrínyi u
7, 1028 Budapest, Hungary
- Institute
for Advanced Study,Technical University
of Munich, Germany, Lichtenbergstrasse
2a, 85748 Garching, Germany
- Parmenides
Stiftung, Hindenburgstr.
15, 82343 Pöcking, Germany
| |
Collapse
|
12
|
Zhao Z, Evangelista FA. Toward Accurate Spin-Orbit Splittings from Relativistic Multireference Electronic Structure Theory. J Phys Chem Lett 2024; 15:7103-7110. [PMID: 38954768 PMCID: PMC11261625 DOI: 10.1021/acs.jpclett.4c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Most nonrelativistic electron correlation methods can be adapted to account for relativistic effects, as long as the relativistic molecular spinor integrals are available, from either a four-, two-, or one-component mean-field calculation. However, relativistic multireference correlation methods remain a relatively unexplored area, with mixed evidence regarding the improvements brought by perturbative treatments. We report, for the first time, the implementation of state-averaged four-component relativistic multireference perturbation theories to second and third order based on the driven similarity renormalization group (DSRG). With our methods, named 4c-SA-DSRG-MRPT2 and 3, we find that the dynamical correlation included on top of 4c-CASSCF references can significantly improve the spin-orbit splittings in p-block elements and potential energy surfaces when compared to 4c-CASSCF and 4c-CASPT2 results. We further show that 4c-DSRG-MRPT2 and 3 are applicable to these systems over a wide range of the flow parameter, with systematic improvement from second to third order in terms of both improved error statistics and reduced sensitivity with respect to the flow parameter.
Collapse
Affiliation(s)
- Zijun Zhao
- Department of Chemistry and
Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A. Evangelista
- Department of Chemistry and
Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
13
|
Wei Y, Debnath S, Weber JL, Mahajan A, Reichman DR, Friesner RA. Scalable Ab Initio Electronic Structure Methods with Near Chemical Accuracy for Main Group Chemistry. J Phys Chem A 2024; 128:5796-5807. [PMID: 38970826 DOI: 10.1021/acs.jpca.4c02853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
This study evaluates the precision of widely recognized quantum chemical methodologies, CCSD(T), DLPNO-CCSD(T), and localized ph-AFQMC, for determining the thermochemistry of main group elements. DLPNO-CCSD(T) and localized ph-AFQMC, which offer greater scalability compared to canonical CCSD(T), have emerged over the past decade as pivotal in producing precise benchmark chemical data. Our investigation includes closed-shell, neutral molecules, focusing on their heat of formation and atomization energy sourced from four specific small molecule data sets. First, we selected molecules from the G2 and G3 data sets, noted for their reliable experimental heat of formation data. Additionally, we incorporate molecules from the W4-11 and W4-17 sets, which provide high-level theoretical reference values for atomization energy at 0 K. Our findings reveal that both DLPNO-CCSD(T) and ph-AFQMC methods are capable of achieving a root-mean-square deviation of less than 1 kcal/mol across the combined data set, aligning with the threshold for chemical accuracy. Moreover, we make efforts to confine the maximum deviations within 2 kcal/mol, a degree of precision that significantly broadens the applicability of these methods in fields such as biology and materials science.
Collapse
Affiliation(s)
- Yujing Wei
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sibali Debnath
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - John L Weber
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Ankit Mahajan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
14
|
Liao K, Ding L, Schilling C. Quantum Information Orbitals (QIO): Unveiling Intrinsic Many-Body Complexity by Compressing Single-Body Triviality. J Phys Chem Lett 2024; 15:6782-6790. [PMID: 38913404 DOI: 10.1021/acs.jpclett.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The simultaneous treatment of static and dynamic correlations in strongly correlated electron systems is a critical challenge. In particular, finding a universal scheme for identifying a single-particle orbital basis that minimizes the representational complexity of the many-body wave function is a formidable and longstanding problem. As a contribution toward its solution, we show that the total orbital correlation actually reveals and quantifies the intrinsic complexity of the wave function, once it is minimized via orbital rotations. To demonstrate the power of this concept in practice, an iterative scheme is proposed to optimize the orbitals by minimizing the total orbital correlation calculated by the tailored coupled cluster singles and doubles (TCCSD) ansatz. The optimized orbitals enable the limited TCCSD ansatz to capture more nontrivial information on the many-body wave function, indicated by the improved wave function and energy. An initial application of this scheme shows great improvement of TCCSD in predicting the singlet ground state potential energy curves of the strongly correlated C2 and Cr2 molecule.
Collapse
Affiliation(s)
- Ke Liao
- Faculty of Physics, Arnold Sommerfeld Centre for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 München, Germany
| | - Lexin Ding
- Faculty of Physics, Arnold Sommerfeld Centre for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 München, Germany
| | - Christian Schilling
- Faculty of Physics, Arnold Sommerfeld Centre for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 München, Germany
| |
Collapse
|
15
|
Hehn L, Deglmann P, Kühn M. Chelate Complexes of 3d Transition Metal Ions─A Challenge for Electronic-Structure Methods? J Chem Theory Comput 2024; 20:4545-4568. [PMID: 38805381 DOI: 10.1021/acs.jctc.3c01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Different electronic-structure methods were assessed for their ability to predict two important properties of the industrially relevant chelating agent nitrilotriacetic acid (NTA): its selectivity with respect to six different first-row transition metal ions and the spin-state energetics of its complex with Fe(III). The investigated methods encompassed density functional theory (DFT), the random phase approximation (RPA), coupled cluster (CC) theory, and the auxiliary-field quantum Monte Carlo (AFQMC) method, as well as the complete active space self-consistent field (CASSCF) method and the respective on-top methods: second-order N-electron valence state perturbation theory (NEVPT2) and multiconfiguration pair-density functional theory (MC-PDFT). Different strategies for selecting active spaces were explored, and the density matrix renormalization group (DMRG) approach was used to solve the largest active spaces. Despite somewhat ambiguous multi-reference diagnostics, most methods gave relatively good agreement with experimental data for the chemical reactions connected to the selectivity, which only involved transition-metal complexes in their high-spin state. CC methods yielded the highest accuracy followed by range-separated DFT and AFQMC. We discussed in detail that even higher accuracies can be obtained with NEVPT2, under the prerequisite that consistent active spaces along the entire chemical reaction can be selected, which was not the case for reactions involving Fe(III). A bigger challenge for electronic-structure methods was the prediction of the spin-state energetics, which additionally involved lower spin states that exhibited larger multi-reference diagnostics. Conceptually different, typically accurate methods ranging from CC theory via DMRG-NEVPT2 in combination with large active spaces to AFQMC agreed well that the high-spin state is energetically significantly favored over the other spin states. This was in contrast to most DFT functionals and RPA which yielded a smaller stabilization and some common DFT functionals and MC-PDFT even predicting the low-spin state to be energetically most favorable.
Collapse
Affiliation(s)
- Lukas Hehn
- Next Generation Computing, BASF SE, Pfalzgrafenstr. 1, 67061 Ludwigshafen, Germany
| | - Peter Deglmann
- Quantum Chemistry, BASF SE, Carl-Bosch-Str. 38, 67063 Ludwigshafen, Germany
| | - Michael Kühn
- Next Generation Computing, BASF SE, Pfalzgrafenstr. 1, 67061 Ludwigshafen, Germany
| |
Collapse
|
16
|
Sukurma Z, Schlipf M, Humer M, Taheridehkordi A, Kresse G. Toward Large-Scale AFQMC Calculations: Large Time Step Auxiliary-Field Quantum Monte Carlo. J Chem Theory Comput 2024; 20:4205-4217. [PMID: 38750634 PMCID: PMC11137827 DOI: 10.1021/acs.jctc.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
We report modifications of the ph-AFQMC algorithm that allow the use of large time steps and reliable time step extrapolation. Our modified algorithm eliminates size-consistency errors present in the standard algorithm when large time steps are employed. We investigate various methods to approximate the exponential of the one-body operator within the AFQMC framework, distinctly demonstrating the superiority of Krylov methods over the conventional Taylor expansion. We assess various propagators within AFQMC and demonstrate that the Split-2 propagator is the optimal method, exhibiting the smallest time-step errors. For the HEAT set molecules, the time-step extrapolated energies deviate on average by only 0.19 kcal/mol from the accurate small time-step energies. For small water clusters, we obtain accurate complete basis-set binding energies using time-step extrapolation with a mean absolute error of 0.07 kcal/mol compared to CCSD(T). Using large time-step ph-AFQMC for the N2 dimer, we show that accurate bond lengths can be obtained while reducing CPU time by an order of magnitude.
Collapse
Affiliation(s)
- Zoran Sukurma
- University
of Vienna, Faculty of Physics and Center for Computational Materials
Science, Kolingasse 14-16, A-1090 Vienna, Austria
- University
of Vienna, Faculty of Physics
& Vienna Doctoral School in Physics, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Martin Schlipf
- VASP
Software GmbH, Berggasse
21/14, 1090 Vienna, Austria
| | - Moritz Humer
- University
of Vienna, Faculty of Physics and Center for Computational Materials
Science, Kolingasse 14-16, A-1090 Vienna, Austria
- University
of Vienna, Faculty of Physics
& Vienna Doctoral School in Physics, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Amir Taheridehkordi
- University
of Vienna, Faculty of Physics and Center for Computational Materials
Science, Kolingasse 14-16, A-1090 Vienna, Austria
| | - Georg Kresse
- University
of Vienna, Faculty of Physics and Center for Computational Materials
Science, Kolingasse 14-16, A-1090 Vienna, Austria
- VASP
Software GmbH, Sensengasse
8, 1090 Vienna, Austria
| |
Collapse
|
17
|
Pham HQ, Ouyang R, Lv D. Scalable Quantum Monte Carlo with Direct-Product Trial Wave Functions. J Chem Theory Comput 2024; 20:3524-3534. [PMID: 38700513 DOI: 10.1021/acs.jctc.3c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The computational demand posed by applying multi-Slater determinant trials in phaseless auxiliary-field quantum Monte Carlo methods (MSD-AFQMC) is particularly significant for molecules exhibiting strong correlations. Here, we propose using direct-product wave functions as trials for MSD-AFQMC, aiming to reduce computational overhead by leveraging the compactness of multi-Slater determinant trials in direct-product form (DP-MSD). This efficiency arises when the active space can be divided into noncoupling subspaces, a condition we term "decomposable active space". By employing localized-active space self-consistent field wave functions as an example of such trials, we demonstrate our proposed approach across a range of molecular systems, each exhibiting varying degrees of complexity in their electronic structures. Our findings indicate that the compact DP-MSD trials can reduce computational costs substantially, by up to 36 times for the C2H6N4 molecule where the two double bonds between nitrogen N=N are clearly separated by a C-C single bond, while maintaining accuracy when active spaces are decomposable. In the case of larger systems such as the benzene dimer, characterized by weak coupling between the two monomers, we observed a decrease in computational cost compared to using a complete active space trial, yet we retained the same level of accuracy. However, for systems where these active subspaces strongly couple, a scenario we refer to as "strong subspace coupling", the method's accuracy decreases compared to that achieved with a complete active space approach. We anticipate that our method will be beneficial for systems with noncoupling to weakly coupling subspaces that require local multireference treatments.
Collapse
Affiliation(s)
- Hung Q Pham
- ByteDance Research, San Jose, California 95110, United States
| | | | - Dingshun Lv
- ByteDance Research, Zhonghang Plaza, No. 43, North third Ring West Road, 100098 Beijing, China
| |
Collapse
|
18
|
Vysotskiy VP, Filippi C, Ryde U. Scalar Relativistic All-Electron and Pseudopotential Ab Initio Study of a Minimal Nitrogenase [Fe(SH) 4H] - Model Employing Coupled-Cluster and Auxiliary-Field Quantum Monte Carlo Many-Body Methods. J Phys Chem A 2024; 128:1358-1374. [PMID: 38324717 PMCID: PMC10895656 DOI: 10.1021/acs.jpca.3c05808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Nitrogenase is the only enzyme that can cleave the triple bond in N2, making nitrogen available to organisms. The detailed mechanism of this enzyme is currently not known, and computational studies are complicated by the fact that different density functional theory (DFT) methods give very different energetic results for calculations involving nitrogenase models. Recently, we designed a [Fe(SH)4H]- model with the fifth proton binding either to Fe or S to mimic different possible protonation states of the nitrogenase active site. We showed that the energy difference between these two isomers (ΔE) is hard to estimate with quantum-mechanical methods. Based on nonrelativistic single-reference coupled-cluster (CC) calculations, we estimated that the ΔE is 101 kJ/mol. In this study, we demonstrate that scalar relativistic effects play an important role and significantly affect ΔE. Our best revised single-reference CC estimates for ΔE are 85-91 kJ/mol, including energy corrections to account for contributions beyond triples, core-valence correlation, and basis-set incompleteness error. Among coupled-cluster approaches with approximate triples, the canonical CCSD(T) exhibits the largest error for this problem. Complementary to CC, we also used phaseless auxiliary-field quantum Monte Carlo calculations (ph-AFQMC). We show that with a Hartree-Fock (HF) trial wave function, ph-AFQMC reproduces the CC results within 5 ± 1 kJ/mol. With multi-Slater-determinant (MSD) trials, the results are 82-84 ± 2 kJ/mol, indicating that multireference effects may be rather modest. Among the DFT methods tested, τ-HCTH, r2SCAN with 10-13% HF exchange with and without dispersion, and O3LYP/O3LYP-D4, and B3LYP*/B3LYP*-D4 generally perform the best. The r2SCAN12 (with 12% HF exchange) functional mimics both the best reference MSD ph-AFQMC and CC ΔE results within 2 kJ/mol.
Collapse
Affiliation(s)
- Victor P. Vysotskiy
- Department
of Computational Chemistry, Lund University,
Chemical Centre, SE-221 00 Lund, Sweden
| | - Claudia Filippi
- MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Ulf Ryde
- Department
of Computational Chemistry, Lund University,
Chemical Centre, SE-221 00 Lund, Sweden
| |
Collapse
|
19
|
Weber JL, Vuong H, Friesner RA, Reichman DR. Expanding the Design Space of Constraints in Auxiliary-Field Quantum Monte Carlo. J Chem Theory Comput 2023; 19:7567-7576. [PMID: 37889331 DOI: 10.1021/acs.jctc.3c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
We formulate and characterize a new constraint for auxiliary-field quantum Monte Carlo (AFQMC) applicable for general fermionic systems, which allows for the accumulation of phase in the random walk but disallows walkers with a magnitude of phase greater than π with respect to the trial wave function. For short imaginary times, before walkers accumulate sizable phase values, this approach is equivalent to exact free projection, allowing one to observe the accumulation of bias associated with the constraint and thus estimate its magnitude a priori. We demonstrate the stability of this constraint over arbitrary imaginary times and system sizes, highlighting the removal of noise due to the fermionic sign problem. Benchmark total energies for a variety of weakly and strongly correlated molecular systems reveal a distinct bias with respect to standard phaseless AFQMC, with a comparative increase in accuracy given sufficient quality of the trial wave function for the set of studied cases. We then take this constraint, termed linecut AFQMC (lc-AFQMC), and systematically release it (lcR-AFQMC), providing a route to obtain a smooth bridge between constrained AFQMC and the exact free projection results.
Collapse
Affiliation(s)
- John L Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Hung Vuong
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
20
|
Mahajan A, Kurian JS, Lee J, Reichman DR, Sharma S. Response properties in phaseless auxiliary field quantum Monte Carlo. J Chem Phys 2023; 159:184101. [PMID: 37937933 DOI: 10.1063/5.0171996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
We present a method for calculating first-order response properties in phaseless auxiliary field quantum Monte Carlo by applying automatic differentiation (AD). Biases and statistical efficiency of the resulting estimators are discussed. Our approach demonstrates that AD enables the calculation of reduced density matrices with the same computational cost scaling per sample as energy calculations, accompanied by a cost prefactor of less than four in our numerical calculations. We investigate the role of self-consistency and trial orbital choice in property calculations. We find that orbitals obtained using density functional theory perform well for the dipole moments of selected molecules compared to those optimized self-consistently.
Collapse
Affiliation(s)
- Ankit Mahajan
- Department of Chemistry, Columbia University, New York, New York 10027, USA
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| | - Jo S Kurian
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| | - Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| |
Collapse
|
21
|
Xiao ZY, Shi H, Zhang S. Interfacing Branching Random Walks with Metropolis Sampling: Constraint Release in Auxiliary-Field Quantum Monte Carlo. J Chem Theory Comput 2023; 19:6782-6795. [PMID: 37661928 DOI: 10.1021/acs.jctc.3c00521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
We present an approach to interface branching random walks with Markov chain Monte Carlo sampling and to switch seamlessly between the two. The approach is discussed in the context of auxiliary-field quantum Monte Carlo (AFQMC) but can be applied to other Monte Carlo calculations or simulations. In AFQMC, the formulation of branching random walks along imaginary-time is needed to realize a constraint to control the sign or phase problem. The constraint is derived from an exact gauge condition and is in practice implemented approximately with a trial wave function or trial density matrix, which can break exactness in the algorithm. We use the generalized Metropolis algorithm to sample a selected portion of the imaginary-time path after it has been produced by the branching random walk. This interfacing allows a constraint release to follow seamlessly from constrained-path sampling, which can reduce the systematic error from the latter. It also provides a way to improve the computation of correlation functions and observables that do not commute with the Hamiltonian. We illustrate the method in atoms and molecules, where improvements in accuracy can be clearly quantified and near-exact results are obtained. We also discuss the computation of the variance of the Hamiltonian and propose a convenient way to evaluate it stochastically without changing the scaling of AFQMC.
Collapse
Affiliation(s)
- Zhi-Yu Xiao
- Department of Physics, College of William & Mary, Williamsburg, Virginia 23187, United States
| | - Hao Shi
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| |
Collapse
|
22
|
Neugebauer H, Vuong HT, Weber JL, Friesner RA, Shee J, Hansen A. Toward Benchmark-Quality Ab Initio Predictions for 3d Transition Metal Electrocatalysts: A Comparison of CCSD(T) and ph-AFQMC. J Chem Theory Comput 2023; 19:6208-6225. [PMID: 37655473 DOI: 10.1021/acs.jctc.3c00617] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Generating accurate ab initio ionization energies for transition metal complexes is an important step toward the accurate computational description of their electrocatalytic reactions. Benchmark-quality data is required for testing existing theoretical methods and developing new ones but is complicated to obtain for many transition metal compounds due to the potential presence of both strong dynamical and static electron correlation. In this regime, it is questionable whether the so-called gold standard, coupled cluster with singles, doubles, and perturbative triples (CCSD(T)), provides the desired level of accuracy─roughly 1-3 kcal/mol. In this work, we compiled a test set of 28 3d metal-containing molecules relevant to homogeneous electrocatalysis (termed 3dTMV) and computed their vertical ionization energies (ionization potentials) with CCSD(T) and phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) in the def2-SVP basis set. A substantial effort has been made to converge away the phaseless bias in the ph-AFQMC reference values. We assess a wide variety of multireference diagnostics and find that spin-symmetry breaking of the CCSD wave function and the PBE0 density functional correlate well with our analysis of multiconfigurational wave functions. We propose quantitative criteria based on symmetry breaking to delineate correlation regimes inside of which appropriately performed CCSD(T) can produce mean absolute deviations from the ph-AFQMC reference values of roughly 2 kcal/mol or less and outside of which CCSD(T) is expected to fail. We also present a preliminary assessment of density functional theory (DFT) functionals on the 3dTMV set.
Collapse
Affiliation(s)
- Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Hung T Vuong
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - John L Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Richard A Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - James Shee
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115 Bonn, Germany
| |
Collapse
|
23
|
Amsler M, Deglmann P, Degroote M, Kaicher MP, Kiser M, Kühn M, Kumar C, Maier A, Samsonidze G, Schroeder A, Streif M, Vodola D, Wever C. Classical and quantum trial wave functions in auxiliary-field quantum Monte Carlo applied to oxygen allotropes and a CuBr2 model system. J Chem Phys 2023; 159:044119. [PMID: 37522404 DOI: 10.1063/5.0146934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
In this work, we test a recently developed method to enhance classical auxiliary-field quantum Monte Carlo (AFQMC) calculations with quantum computers against examples from chemistry and material science, representative of classes of industry-relevant systems. As molecular test cases, we calculate the energy curve of H4 and the relative energies of ozone and singlet molecular oxygen with respect to triplet molecular oxygen, which is industrially relevant in organic oxidation reactions. We find that trial wave functions beyond single Slater determinants improve the performance of AFQMC and allow it to generate energies close to chemical accuracy compared to full configuration interaction or experimental results. In the field of material science, we study the electronic structure properties of cuprates through the quasi-1D Fermi-Hubbard model derived from CuBr2, where we find that trial wave functions with both significantly larger fidelities and lower energies over a mean-field solution do not necessarily lead to AFQMC results closer to the exact ground state energy.
Collapse
Affiliation(s)
- Maximilian Amsler
- Corporate Sector Research and Advance Engineering, Robert Bosch GmbH, Robert-Bosch-Campus 1, 71272 Renningen, Germany
| | - Peter Deglmann
- BASF SE, Quantum Chemistry, Carl-Bosch-Str. 38, 67063 Ludwigshafen, Germany
- BASF Digital Solutions GmbH, Next Generation Computing, Pfalzgrafenstr. 1, 67056 Ludwigshafen, Germany
| | | | - Michael P Kaicher
- BASF Digital Solutions GmbH, Next Generation Computing, Pfalzgrafenstr. 1, 67056 Ludwigshafen, Germany
| | - Matthew Kiser
- Volkswagen AG, Ungererstr. 69, 80805 Munich, Germany
- TUM School of Natural Sciences, Technical University of Munich, Boltzmannstr. 10, 85748 Garching, Germany
| | - Michael Kühn
- BASF SE, Quantum Chemistry, Carl-Bosch-Str. 38, 67063 Ludwigshafen, Germany
- BASF Digital Solutions GmbH, Next Generation Computing, Pfalzgrafenstr. 1, 67056 Ludwigshafen, Germany
| | - Chandan Kumar
- BMW Group, New Technology and Innovation, Parkring 19-23, 85748 Garching, Munich, Germany
| | | | - Georgy Samsonidze
- Robert Bosch LLC, Research and Technology Center, Sunnyvale, California 94085, USA
| | - Anna Schroeder
- Corporate Sector Research and Advance Engineering, Robert Bosch GmbH, Robert-Bosch-Campus 1, 71272 Renningen, Germany
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Michael Streif
- Quantum Lab, Boehringer Ingelheim, Ingelheim am Rhein, Germany
| | - Davide Vodola
- BASF Digital Solutions GmbH, Next Generation Computing, Pfalzgrafenstr. 1, 67056 Ludwigshafen, Germany
| | - Christopher Wever
- Corporate Sector Research and Advance Engineering, Robert Bosch GmbH, Robert-Bosch-Campus 1, 71272 Renningen, Germany
| |
Collapse
|
24
|
Chen MS, Lee J, Ye HZ, Berkelbach TC, Reichman DR, Markland TE. Data-Efficient Machine Learning Potentials from Transfer Learning of Periodic Correlated Electronic Structure Methods: Liquid Water at AFQMC, CCSD, and CCSD(T) Accuracy. J Chem Theory Comput 2023; 19:4510-4519. [PMID: 36730728 DOI: 10.1021/acs.jctc.2c01203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Obtaining the atomistic structure and dynamics of disordered condensed-phase systems from first-principles remains one of the forefront challenges of chemical theory. Here we exploit recent advances in periodic electronic structure and provide a data-efficient approach to obtain machine-learned condensed-phase potential energy surfaces using AFQMC, CCSD, and CCSD(T) from a very small number (≤200) of energies by leveraging a transfer learning scheme starting from lower-tier electronic structure methods. We demonstrate the effectiveness of this approach for liquid water by performing both classical and path integral molecular dynamics simulations on these machine-learned potential energy surfaces. By doing this, we uncover the interplay of dynamical electron correlation and nuclear quantum effects across the entire liquid range of water while providing a general strategy for efficiently utilizing periodic correlated electronic structure methods to explore disordered condensed-phase systems.
Collapse
Affiliation(s)
- Michael S Chen
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Joonho Lee
- Department of Chemistry, Columbia University, New York, New York10027, United States
| | - Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, New York10027, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York10027, United States
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York10010, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, New York10027, United States
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| |
Collapse
|
25
|
Babbush R, Huggins WJ, Berry DW, Ung SF, Zhao A, Reichman DR, Neven H, Baczewski AD, Lee J. Quantum simulation of exact electron dynamics can be more efficient than classical mean-field methods. Nat Commun 2023; 14:4058. [PMID: 37429883 DOI: 10.1038/s41467-023-39024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/26/2023] [Indexed: 07/12/2023] Open
Abstract
Quantum algorithms for simulating electronic ground states are slower than popular classical mean-field algorithms such as Hartree-Fock and density functional theory but offer higher accuracy. Accordingly, quantum computers have been predominantly regarded as competitors to only the most accurate and costly classical methods for treating electron correlation. However, here we tighten bounds showing that certain first-quantized quantum algorithms enable exact time evolution of electronic systems with exponentially less space and polynomially fewer operations in basis set size than conventional real-time time-dependent Hartree-Fock and density functional theory. Although the need to sample observables in the quantum algorithm reduces the speedup, we show that one can estimate all elements of the k-particle reduced density matrix with a number of samples scaling only polylogarithmically in basis set size. We also introduce a more efficient quantum algorithm for first-quantized mean-field state preparation that is likely cheaper than the cost of time evolution. We conclude that quantum speedup is most pronounced for finite-temperature simulations and suggest several practically important electron dynamics problems with potential quantum advantage.
Collapse
Affiliation(s)
| | | | - Dominic W Berry
- Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia
| | - Shu Fay Ung
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Andrew Zhao
- Google Quantum AI, Venice, CA, USA
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | | | | | - Andrew D Baczewski
- Quantum Algorithms and Applications Collaboratory, Sandia National Laboratories, Albuquerque, NM, USA
| | - Joonho Lee
- Google Quantum AI, Venice, CA, USA.
- Department of Chemistry, Columbia University, New York, NY, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, USA.
| |
Collapse
|
26
|
Carter-Fenk K, Head-Gordon M. Repartitioned Brillouin-Wigner perturbation theory with a size-consistent second-order correlation energy. J Chem Phys 2023; 158:234108. [PMID: 37338032 PMCID: PMC10284609 DOI: 10.1063/5.0150033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Second-order Møller-Plesset perturbation theory (MP2) often breaks down catastrophically in small-gap systems, leaving much to be desired in its performance for myriad chemical applications such as noncovalent interactions, thermochemistry, and dative bonding in transition metal complexes. This divergence problem has reignited interest in Brillouin-Wigner perturbation theory (BWPT), which is regular at all orders but lacks size consistency and extensivity, severely limiting its application to chemistry. In this work, we propose an alternative partitioning of the Hamiltonian that leads to a regular BWPT perturbation series that, through the second order, is size-extensive, size-consistent (provided its Hartree-Fock reference is also), and orbital invariant. Our second-order size-consistent Brillouin-Wigner (BW-s2) approach can describe the exact dissociation limit of H2 in a minimal basis set, regardless of the spin polarization of the reference orbitals. More broadly, we find that BW-s2 offers improvements relative to MP2 for covalent bond breaking, noncovalent interaction energies, and metal/organic reaction energies, although rivaling coupled-cluster with single and double substitutions for thermochemical properties.
Collapse
Affiliation(s)
- Kevin Carter-Fenk
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
27
|
Shee J, Weber JL, Reichman DR, Friesner RA, Zhang S. On the potentially transformative role of auxiliary-field quantum Monte Carlo in quantum chemistry: A highly accurate method for transition metals and beyond. J Chem Phys 2023; 158:140901. [PMID: 37061483 PMCID: PMC10089686 DOI: 10.1063/5.0134009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/01/2023] [Indexed: 04/17/2023] Open
Abstract
Approximate solutions to the ab initio electronic structure problem have been a focus of theoretical and computational chemistry research for much of the past century, with the goal of predicting relevant energy differences to within "chemical accuracy" (1 kcal/mol). For small organic molecules, or in general, for weakly correlated main group chemistry, a hierarchy of single-reference wave function methods has been rigorously established, spanning perturbation theory and the coupled cluster (CC) formalism. For these systems, CC with singles, doubles, and perturbative triples is known to achieve chemical accuracy, albeit at O(N7) computational cost. In addition, a hierarchy of density functional approximations of increasing formal sophistication, known as Jacob's ladder, has been shown to systematically reduce average errors over large datasets representing weakly correlated chemistry. However, the accuracy of such computational models is less clear in the increasingly important frontiers of chemical space including transition metals and f-block compounds, in which strong correlation can play an important role in reactivity. A stochastic method, phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC), has been shown to be capable of producing chemically accurate predictions even for challenging molecular systems beyond the main group, with relatively low O(N3 - N4) cost and near-perfect parallel efficiency. Herein, we present our perspectives on the past, present, and future of the ph-AFQMC method. We focus on its potential in transition metal quantum chemistry to be a highly accurate, systematically improvable method that can reliably probe strongly correlated systems in biology and chemical catalysis and provide reference thermochemical values (for future development of density functionals or interatomic potentials) when experiments are either noisy or absent. Finally, we discuss the present limitations of the method and where we expect near-term development to be most fruitful.
Collapse
Affiliation(s)
- James Shee
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - John L. Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - David R. Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Richard A. Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA
| |
Collapse
|
28
|
Liu Y, Meitei OR, Chin ZE, Dutt A, Tao M, Chuang IL, Van Voorhis T. Bootstrap Embedding on a Quantum Computer. J Chem Theory Comput 2023; 19:2230-2247. [PMID: 37001026 DOI: 10.1021/acs.jctc.3c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
We extend molecular bootstrap embedding to make it appropriate for implementation on a quantum computer. This enables solution of the electronic structure problem of a large molecule as an optimization problem for a composite Lagrangian governing fragments of the total system, in such a way that fragment solutions can harness the capabilities of quantum computers. By employing state-of-art quantum subroutines including the quantum SWAP test and quantum amplitude amplification, we show how a quadratic speedup can be obtained over the classical algorithm, in principle. Utilization of quantum computation also allows the algorithm to match─at little additional computational cost─full density matrices at fragment boundaries, instead of being limited to 1-RDMs. Current quantum computers are small, but quantum bootstrap embedding provides a potentially generalizable strategy for harnessing such small machines through quantum fragment matching.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Physics, Co-Design Center for Quantum Advantage, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Oinam R. Meitei
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zachary E. Chin
- Department of Physics, Co-Design Center for Quantum Advantage, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Arkopal Dutt
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Max Tao
- Department of Physics, Co-Design Center for Quantum Advantage, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Isaac L. Chuang
- Department of Physics, Co-Design Center for Quantum Advantage, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Malone FD, Mahajan A, Spencer JS, Lee J. ipie: A Python-Based Auxiliary-Field Quantum Monte Carlo Program with Flexibility and Efficiency on CPUs and GPUs. J Chem Theory Comput 2023; 19:109-121. [PMID: 36503227 DOI: 10.1021/acs.jctc.2c00934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the development of a python-based auxiliary-field quantum Monte Carlo (AFQMC) program, ipie, with preliminary timing benchmarks and new AFQMC results on the isomerization of [Cu2O2]2+. We demonstrate how implementations for both central and graphical processing units (CPUs and GPUs) are achieved in ipie. We show an interface of ipie with PySCF as well as a straightforward template for adding new estimators to ipie. Our timing benchmarks against other C++ codes, QMCPACK and Dice, suggest that ipie is faster or similarly performing for all chemical systems considered on both CPUs and GPUs. Our results on [Cu2O2]2+ using selected configuration interaction trials show that it is possible to converge the ph-AFQMC isomerization energy between bis(μ-oxo) and μ-η2:η2 peroxo configurations to the exact known results for small basis sets with 105-106 determinants. We also report the isomerization energy with a quadruple-zeta basis set with an estimated error less than a kcal/mol, which involved 52 electrons and 290 orbitals with 106 determinants in the trial wave function. These results highlight the utility of ph-AFQMC and ipie for systems with modest strong correlation and large-scale dynamic correlation.
Collapse
Affiliation(s)
- Fionn D Malone
- Google Research, Venice, California 90291, United States
| | - Ankit Mahajan
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| | | | - Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|