1
|
Tufekci BA, Foreman K, Romeu JGF, Dixon DA, Peterson KA, Cheng L, Bowen KH. Anion Photoelectron Spectroscopy and Ab Initio Studies of the UF - Anion. J Phys Chem Lett 2024; 15:11932-11938. [PMID: 39574013 DOI: 10.1021/acs.jpclett.4c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
A synergistic anion photoelectron spectroscopic and ab initio computational study of photodetachment of UF- is reported. The measurement determined a vertical detachment energy of 0.63(03) eV, which is consistent with a spinor-based relativistic coupled-cluster CCSD(T) value of 0.61 eV. The complex spectral features due to excited electronic states and vibrational progressions of UF are analyzed and assigned with the help of spin-orbit-coupled multireference perturbation theory and spinor-based relativistic coupled-cluster calculations. UF and UF- are confirmed to be dominated by ionic bonding. The usefulness of the spinor CCSD(T) approach is demonstrated.
Collapse
Affiliation(s)
- Burak A Tufekci
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kathryn Foreman
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - João G F Romeu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| | - L Cheng
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Sunaga A. Structure and Excitation Spectra of Third-Row Transition Metal Hexafluorides Based on Multi-Reference Exact Two-Component Theory. Inorg Chem 2024; 63:18355-18364. [PMID: 39283310 DOI: 10.1021/acs.inorgchem.4c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The structures and some vertical excitation energies of third-row transition metal hexafluorides (MF6, M = Re, Os, Ir, Pt, Au, Hg) were calculated using the generalized-active-space configuration interaction (GASCI) theory based on the exact two-component (X2C) Hamiltonian. The spin-orbit coupling (SOC) was included at the Hartree-Fock level, enabling us to analyze the SOC at the orbital level (spinor-representation). The excitation spectra were assigned based on the double group, a relativistic group theory applicable to states with the SOC. This study provides a fundamental understanding of the ligand field splitting, including the SOC, that is useful for the photochemistry and spin chemistry involving heavy elements.
Collapse
Affiliation(s)
- Ayaki Sunaga
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Tomchak KH, Sorensen JJ, Tieu E, Morse MD. Predissociation-based measurements of bond dissociation energies: US2, OUS, and USe. J Chem Phys 2024; 161:044306. [PMID: 39041877 DOI: 10.1063/5.0220813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
The uranium-containing molecules US2, OUS, and USe have been investigated using a pulsed laser ablation supersonic beam molecular source with time-of-flight mass spectrometric detection. Spectra have been recorded using the resonant two-photon ionization method over the spectroscopic range from 277 to 238 nm. These species have a myriad of excited electronic states in this spectroscopic region, leading to spectra that are highly congested and appear quasicontinuous. Sharp predissociation thresholds are observed, allowing precise bond dissociation energies to be measured. In the case of the triatomic molecules, it was necessary to use one laser for excitation and a delayed laser for ionization in order to observe a sharp predissociation threshold that allowed a precise bond dissociation energy to be measured. The resulting thermochemical values are D0(SU-S) = 4.910 ± 0.003 eV, D0(OU-S) = 5.035 ± 0.004 eV, and D0(USe) = 4.609 ± 0.009 eV. These results provide the first measurement of D0(USe) and reduce the error limits in the previous values of D0(SU-S) and D0(OU-S) by a factor of more than 70.
Collapse
Affiliation(s)
- Kimberly H Tomchak
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Jason J Sorensen
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Erick Tieu
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Michael D Morse
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA
| |
Collapse
|
4
|
Romeu JGF, Hunt ARE, de Melo GF, Peterson KA, Dixon DA. Energetic and Electronic Properties of UO 0/± and UF 0/±. J Phys Chem A 2024; 128:5586-5604. [PMID: 38954748 DOI: 10.1021/acs.jpca.4c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
High-level electronic structure calculations were conducted to examine the bonding and spectroscopic properties of the UO0/± and UF0/± diatomic molecules. The low-lying Ω states were described by using multireference SO-CASPT2 calculations. The adiabatic electronic affinity (AEA), adiabatic ionization energy (IE), and bond dissociation energy (BDE) were calculated at the Feller-Peterson-Dixon (FPD) level. The ground state of UO is predicted to be 5I4, and that of UF is 4I9/2. The calculated AEAs of UO and UF are 1.123 and 0.453 eV, respectively, and the corresponding IEs are 5.976 and 6.278 eV. The BDE of UO (749.5 kJ/mol) is predicted to be considerably higher than that of UF (627.2 kJ/mol), and both are higher than those predicted for UB, UC, and UN. NBO calculations show strong ionic character for the ground states of UO and UF and bond orders that range from 2 to 3 and from 1 to 2, respectively. Comparisons of the calculated properties to those of the series comprising UB, UC, and UN diatomic molecules are given.
Collapse
Affiliation(s)
- João G F Romeu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Ashley R E Hunt
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| | - Gabriel F de Melo
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
5
|
Zhang C, Lipparini F, Stopkowicz S, Gauss J, Cheng L. Cholesky Decomposition-Based Implementation of Relativistic Two-Component Coupled-Cluster Methods for Medium-Sized Molecules. J Chem Theory Comput 2024; 20:787-798. [PMID: 38198515 DOI: 10.1021/acs.jctc.3c01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A Cholesky decomposition (CD)-based implementation of relativistic two-component coupled-cluster (CC) and equation-of-motion CC (EOM-CC) methods using an exact two-component Hamiltonian augmented with atomic-mean-field spin-orbit integrals (the X2CAMF scheme) is reported. The present CD-based implementation of X2CAMF-CC and EOM-CC methods employs atomic-orbital-based algorithms to avoid the construction of two-electron integrals and intermediates involving three and four virtual indices. Our CD-based implementation extends the applicability of X2CAMF-CC and EOM-CC methods to medium-sized molecules with the possibility to correlate around 1000 spinors. Benchmark calculations for uranium-containing small molecules were performed to assess the dependence of the CC results on the Cholesky threshold. A Cholesky threshold of 10-4 is shown to be sufficient to maintain chemical accuracy. Example calculations to illustrate the capability of the CD-based relativistic CC methods are reported for the bond-dissociation energy of the uranium hexafluoride molecule, UF6, with up to quadruple-ζ basis sets, and the lowest excitation energy in the solvated uranyl ion [UO22+(H2O)12].
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Chemistry, the Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa I-56124, Italy
| | - Stella Stopkowicz
- Fachrichtung Chemie, Universität des Saarlandes, Saarbrücken D-66123, Germany
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0315, Norway
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| | - Lan Cheng
- Department of Chemistry, the Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Bubas AR, Zhang WJ, Armentrout PB. A guided ion beam investigation of UO2+ thermodynamics and f orbital participation: Reactions of U+ + CO2, UO+ + O2, and UO+ + CO. J Chem Phys 2023; 159:244305. [PMID: 38149740 DOI: 10.1063/5.0183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023] Open
Abstract
A guided ion beam tandem mass spectrometer was employed to study the reactions of U+ + CO2, UO+ + O2, and the reverse of the former, UO+ + CO. Reaction cross sections as a function of kinetic energy over about a three order of magnitude range were studied for all systems. The reaction of U+ + CO2 proceeds to form UO+ + CO with an efficiency of 118% ± 24% as well as generating UO2+ + C and UCO+ + O. The reaction of UO+ + O2 forms UO2+ in an exothermic, barrierless process and also results in the collision-induced dissociation of UO+ to yield U+. In the UO+ + CO reaction, the formation of UO2+ in an endothermic process is the dominant reaction, but minor products of UCO+ + O and U+ + (O + CO) are also observed. Analysis of the kinetic energy dependences observed provides the bond energies, D0(U+-O) = 7.98 ± 0.22 and 8.05 ± 0.14 eV, D0(U+-CO) = 0.73 ± 0.13 eV, and D0(OU+-O) = 7.56 ± 0.12 eV. The values obtained for D0(U+-O) and D0(OU+-O) agree well with the previously reported literature values. To our knowledge, this is the first experimental measurement of D0(U+-CO). An analysis of the oxide bond energies shows that participation of 5f orbitals leads to a substantial increase in the thermodynamic stability of UO2+ relative to ThO2+ and especially transition metal dioxide cations.
Collapse
Affiliation(s)
- Amanda R Bubas
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112-0850, USA
| | - Wen-Jing Zhang
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112-0850, USA
| | - P B Armentrout
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112-0850, USA
| |
Collapse
|
7
|
Chan B. DAPD Set of Pd-Containing Diatomic Molecules: Accurate Molecular Properties and the Great Lengths to Obtain Them. J Chem Theory Comput 2023; 19:9260-9268. [PMID: 38096563 DOI: 10.1021/acs.jctc.3c01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
In the present study, we obtained reliable bond energy, bond length, and zero-point vibrational frequency for a set of diatomic Pd species (the DAPD set). It includes PdH, Pd2, and PdX (X = B, C, N, O, F, Al, Si, P, S, and Cl). Our highest-level protocol (W4X-L) represents scalar and spin-orbit relativistic, valence- and inner-valence correlated, extrapolated CCSDTQ(5) energy. The DAPD set of molecules is challenging for computational chemistry methods in different manners; for Pd2, the spin-orbit contribution to the bond energy is fairly large, whereas for PdC and PdSi, the post-CCSD(T) correlation components are considerable. The diverse range of requirements represents a significant challenge for lower-level methods. While density functional theory (DFT) methods generally yield good agreements for bond lengths and vibrational frequencies, large deviations are found for bond energies. In general, hybrid DFT methods are more accurate than nonhybrid functionals, but the agreement in individual cases varies. This illustrates the critical role that new high-quality reference data would play in the continual development of lower-cost methods.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
8
|
Shee J, Weber JL, Reichman DR, Friesner RA, Zhang S. On the potentially transformative role of auxiliary-field quantum Monte Carlo in quantum chemistry: A highly accurate method for transition metals and beyond. J Chem Phys 2023; 158:140901. [PMID: 37061483 PMCID: PMC10089686 DOI: 10.1063/5.0134009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/01/2023] [Indexed: 04/17/2023] Open
Abstract
Approximate solutions to the ab initio electronic structure problem have been a focus of theoretical and computational chemistry research for much of the past century, with the goal of predicting relevant energy differences to within "chemical accuracy" (1 kcal/mol). For small organic molecules, or in general, for weakly correlated main group chemistry, a hierarchy of single-reference wave function methods has been rigorously established, spanning perturbation theory and the coupled cluster (CC) formalism. For these systems, CC with singles, doubles, and perturbative triples is known to achieve chemical accuracy, albeit at O(N7) computational cost. In addition, a hierarchy of density functional approximations of increasing formal sophistication, known as Jacob's ladder, has been shown to systematically reduce average errors over large datasets representing weakly correlated chemistry. However, the accuracy of such computational models is less clear in the increasingly important frontiers of chemical space including transition metals and f-block compounds, in which strong correlation can play an important role in reactivity. A stochastic method, phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC), has been shown to be capable of producing chemically accurate predictions even for challenging molecular systems beyond the main group, with relatively low O(N3 - N4) cost and near-perfect parallel efficiency. Herein, we present our perspectives on the past, present, and future of the ph-AFQMC method. We focus on its potential in transition metal quantum chemistry to be a highly accurate, systematically improvable method that can reliably probe strongly correlated systems in biology and chemical catalysis and provide reference thermochemical values (for future development of density functionals or interatomic potentials) when experiments are either noisy or absent. Finally, we discuss the present limitations of the method and where we expect near-term development to be most fruitful.
Collapse
Affiliation(s)
- James Shee
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - John L. Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - David R. Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Richard A. Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA
| |
Collapse
|